Weighted modular estimates for a generalized maximal operator on spaces of homogeneous type

Autores
Kanashiro, Ana María; Pradolini, Gladis Guadalupe; Salinas, Oscar Mario
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study weighted modular inequalities for a generalized maximal operator associated to a Young function in the context of spaces of homogeneous type. We prove the equivalence between these inequalities and a Dini-type condition, which involves the function associated to the operator and the functions related to the modular estimates. Particularly we obtain a generalization of a result of Perez and Wheeden (J Funct Anal 181(1):146–188, 2001). In addition we prove a characterization of the A 1-Muckenhoupt class, that extends and improves the corresponding results proved by Kita (Acta Math Hungar 72(4):291–305, 1996; Math Nachr 178:1180–1189, 2005).
Fil: Kanashiro, Ana María. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
Fil: Pradolini, Gladis Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Salinas, Oscar Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Materia
Maximal Functions
Modular Inequalities
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/67944

id CONICETDig_90314d1f9ccd18acd1d62851a40f83a9
oai_identifier_str oai:ri.conicet.gov.ar:11336/67944
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Weighted modular estimates for a generalized maximal operator on spaces of homogeneous typeKanashiro, Ana MaríaPradolini, Gladis GuadalupeSalinas, Oscar MarioMaximal FunctionsModular Inequalitieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study weighted modular inequalities for a generalized maximal operator associated to a Young function in the context of spaces of homogeneous type. We prove the equivalence between these inequalities and a Dini-type condition, which involves the function associated to the operator and the functions related to the modular estimates. Particularly we obtain a generalization of a result of Perez and Wheeden (J Funct Anal 181(1):146–188, 2001). In addition we prove a characterization of the A 1-Muckenhoupt class, that extends and improves the corresponding results proved by Kita (Acta Math Hungar 72(4):291–305, 1996; Math Nachr 178:1180–1189, 2005).Fil: Kanashiro, Ana María. Universidad Nacional del Litoral. Facultad de Ingeniería Química; ArgentinaFil: Pradolini, Gladis Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Salinas, Oscar Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaUniversidad de Barcelona2012-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/67944Kanashiro, Ana María; Pradolini, Gladis Guadalupe; Salinas, Oscar Mario; Weighted modular estimates for a generalized maximal operator on spaces of homogeneous type; Universidad de Barcelona; Collectanea Mathematica; 63; 2; 9-2012; 147-1640010-0757CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13348-010-0027-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:23:39Zoai:ri.conicet.gov.ar:11336/67944instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:23:39.956CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Weighted modular estimates for a generalized maximal operator on spaces of homogeneous type
title Weighted modular estimates for a generalized maximal operator on spaces of homogeneous type
spellingShingle Weighted modular estimates for a generalized maximal operator on spaces of homogeneous type
Kanashiro, Ana María
Maximal Functions
Modular Inequalities
title_short Weighted modular estimates for a generalized maximal operator on spaces of homogeneous type
title_full Weighted modular estimates for a generalized maximal operator on spaces of homogeneous type
title_fullStr Weighted modular estimates for a generalized maximal operator on spaces of homogeneous type
title_full_unstemmed Weighted modular estimates for a generalized maximal operator on spaces of homogeneous type
title_sort Weighted modular estimates for a generalized maximal operator on spaces of homogeneous type
dc.creator.none.fl_str_mv Kanashiro, Ana María
Pradolini, Gladis Guadalupe
Salinas, Oscar Mario
author Kanashiro, Ana María
author_facet Kanashiro, Ana María
Pradolini, Gladis Guadalupe
Salinas, Oscar Mario
author_role author
author2 Pradolini, Gladis Guadalupe
Salinas, Oscar Mario
author2_role author
author
dc.subject.none.fl_str_mv Maximal Functions
Modular Inequalities
topic Maximal Functions
Modular Inequalities
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study weighted modular inequalities for a generalized maximal operator associated to a Young function in the context of spaces of homogeneous type. We prove the equivalence between these inequalities and a Dini-type condition, which involves the function associated to the operator and the functions related to the modular estimates. Particularly we obtain a generalization of a result of Perez and Wheeden (J Funct Anal 181(1):146–188, 2001). In addition we prove a characterization of the A 1-Muckenhoupt class, that extends and improves the corresponding results proved by Kita (Acta Math Hungar 72(4):291–305, 1996; Math Nachr 178:1180–1189, 2005).
Fil: Kanashiro, Ana María. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
Fil: Pradolini, Gladis Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Salinas, Oscar Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
description We study weighted modular inequalities for a generalized maximal operator associated to a Young function in the context of spaces of homogeneous type. We prove the equivalence between these inequalities and a Dini-type condition, which involves the function associated to the operator and the functions related to the modular estimates. Particularly we obtain a generalization of a result of Perez and Wheeden (J Funct Anal 181(1):146–188, 2001). In addition we prove a characterization of the A 1-Muckenhoupt class, that extends and improves the corresponding results proved by Kita (Acta Math Hungar 72(4):291–305, 1996; Math Nachr 178:1180–1189, 2005).
publishDate 2012
dc.date.none.fl_str_mv 2012-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/67944
Kanashiro, Ana María; Pradolini, Gladis Guadalupe; Salinas, Oscar Mario; Weighted modular estimates for a generalized maximal operator on spaces of homogeneous type; Universidad de Barcelona; Collectanea Mathematica; 63; 2; 9-2012; 147-164
0010-0757
CONICET Digital
CONICET
url http://hdl.handle.net/11336/67944
identifier_str_mv Kanashiro, Ana María; Pradolini, Gladis Guadalupe; Salinas, Oscar Mario; Weighted modular estimates for a generalized maximal operator on spaces of homogeneous type; Universidad de Barcelona; Collectanea Mathematica; 63; 2; 9-2012; 147-164
0010-0757
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13348-010-0027-3
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidad de Barcelona
publisher.none.fl_str_mv Universidad de Barcelona
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614231843930112
score 13.070432