Weighted modular estimates for a generalized maximal operator on spaces of homogeneous type
- Autores
- Kanashiro, Ana María; Pradolini, Gladis Guadalupe; Salinas, Oscar Mario
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study weighted modular inequalities for a generalized maximal operator associated to a Young function in the context of spaces of homogeneous type. We prove the equivalence between these inequalities and a Dini-type condition, which involves the function associated to the operator and the functions related to the modular estimates. Particularly we obtain a generalization of a result of Perez and Wheeden (J Funct Anal 181(1):146–188, 2001). In addition we prove a characterization of the A 1-Muckenhoupt class, that extends and improves the corresponding results proved by Kita (Acta Math Hungar 72(4):291–305, 1996; Math Nachr 178:1180–1189, 2005).
Fil: Kanashiro, Ana María. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
Fil: Pradolini, Gladis Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Salinas, Oscar Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina - Materia
-
Maximal Functions
Modular Inequalities - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/67944
Ver los metadatos del registro completo
id |
CONICETDig_90314d1f9ccd18acd1d62851a40f83a9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/67944 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Weighted modular estimates for a generalized maximal operator on spaces of homogeneous typeKanashiro, Ana MaríaPradolini, Gladis GuadalupeSalinas, Oscar MarioMaximal FunctionsModular Inequalitieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study weighted modular inequalities for a generalized maximal operator associated to a Young function in the context of spaces of homogeneous type. We prove the equivalence between these inequalities and a Dini-type condition, which involves the function associated to the operator and the functions related to the modular estimates. Particularly we obtain a generalization of a result of Perez and Wheeden (J Funct Anal 181(1):146–188, 2001). In addition we prove a characterization of the A 1-Muckenhoupt class, that extends and improves the corresponding results proved by Kita (Acta Math Hungar 72(4):291–305, 1996; Math Nachr 178:1180–1189, 2005).Fil: Kanashiro, Ana María. Universidad Nacional del Litoral. Facultad de Ingeniería Química; ArgentinaFil: Pradolini, Gladis Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Salinas, Oscar Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaUniversidad de Barcelona2012-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/67944Kanashiro, Ana María; Pradolini, Gladis Guadalupe; Salinas, Oscar Mario; Weighted modular estimates for a generalized maximal operator on spaces of homogeneous type; Universidad de Barcelona; Collectanea Mathematica; 63; 2; 9-2012; 147-1640010-0757CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13348-010-0027-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:23:39Zoai:ri.conicet.gov.ar:11336/67944instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:23:39.956CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Weighted modular estimates for a generalized maximal operator on spaces of homogeneous type |
title |
Weighted modular estimates for a generalized maximal operator on spaces of homogeneous type |
spellingShingle |
Weighted modular estimates for a generalized maximal operator on spaces of homogeneous type Kanashiro, Ana María Maximal Functions Modular Inequalities |
title_short |
Weighted modular estimates for a generalized maximal operator on spaces of homogeneous type |
title_full |
Weighted modular estimates for a generalized maximal operator on spaces of homogeneous type |
title_fullStr |
Weighted modular estimates for a generalized maximal operator on spaces of homogeneous type |
title_full_unstemmed |
Weighted modular estimates for a generalized maximal operator on spaces of homogeneous type |
title_sort |
Weighted modular estimates for a generalized maximal operator on spaces of homogeneous type |
dc.creator.none.fl_str_mv |
Kanashiro, Ana María Pradolini, Gladis Guadalupe Salinas, Oscar Mario |
author |
Kanashiro, Ana María |
author_facet |
Kanashiro, Ana María Pradolini, Gladis Guadalupe Salinas, Oscar Mario |
author_role |
author |
author2 |
Pradolini, Gladis Guadalupe Salinas, Oscar Mario |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Maximal Functions Modular Inequalities |
topic |
Maximal Functions Modular Inequalities |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study weighted modular inequalities for a generalized maximal operator associated to a Young function in the context of spaces of homogeneous type. We prove the equivalence between these inequalities and a Dini-type condition, which involves the function associated to the operator and the functions related to the modular estimates. Particularly we obtain a generalization of a result of Perez and Wheeden (J Funct Anal 181(1):146–188, 2001). In addition we prove a characterization of the A 1-Muckenhoupt class, that extends and improves the corresponding results proved by Kita (Acta Math Hungar 72(4):291–305, 1996; Math Nachr 178:1180–1189, 2005). Fil: Kanashiro, Ana María. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina Fil: Pradolini, Gladis Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Salinas, Oscar Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina |
description |
We study weighted modular inequalities for a generalized maximal operator associated to a Young function in the context of spaces of homogeneous type. We prove the equivalence between these inequalities and a Dini-type condition, which involves the function associated to the operator and the functions related to the modular estimates. Particularly we obtain a generalization of a result of Perez and Wheeden (J Funct Anal 181(1):146–188, 2001). In addition we prove a characterization of the A 1-Muckenhoupt class, that extends and improves the corresponding results proved by Kita (Acta Math Hungar 72(4):291–305, 1996; Math Nachr 178:1180–1189, 2005). |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/67944 Kanashiro, Ana María; Pradolini, Gladis Guadalupe; Salinas, Oscar Mario; Weighted modular estimates for a generalized maximal operator on spaces of homogeneous type; Universidad de Barcelona; Collectanea Mathematica; 63; 2; 9-2012; 147-164 0010-0757 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/67944 |
identifier_str_mv |
Kanashiro, Ana María; Pradolini, Gladis Guadalupe; Salinas, Oscar Mario; Weighted modular estimates for a generalized maximal operator on spaces of homogeneous type; Universidad de Barcelona; Collectanea Mathematica; 63; 2; 9-2012; 147-164 0010-0757 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13348-010-0027-3 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de Barcelona |
publisher.none.fl_str_mv |
Universidad de Barcelona |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614231843930112 |
score |
13.070432 |