Equivalence between varieties of square root rings and Boolean algebras with a distinguished automorphism
- Autores
- Díaz Varela, José Patricio
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we study the variety R2 of square root rings, that is, commutative rings with unit, of characteristic two, with the square root as an additional operation. We prove that this variety is generated by the finite Galois fields GF ( 2k ) and we establish an equivalence between R2 and the variety BA δ of Boolean algebras with a distinguished automorphism. Via this equivalence, we will be able to obtain properties of R2 from the results proved in [M. Abad, J.P. Díaz Varela, M. Zander, Boolean algebras with a distinguished automorphism, Rep. Math. Logic 37 (2003) 101-112].
Fil: Díaz Varela, José Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina - Materia
-
BOOLEAN ALGEBRAS
COMMUTATIVE RINGS
FINITE FIELDS
FROBENIUS AUTOMORPHISM
INTERPRETATIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/96058
Ver los metadatos del registro completo
id |
CONICETDig_5271ddc6f8281590fb9aec677b5a5387 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/96058 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Equivalence between varieties of square root rings and Boolean algebras with a distinguished automorphismDíaz Varela, José PatricioBOOLEAN ALGEBRASCOMMUTATIVE RINGSFINITE FIELDSFROBENIUS AUTOMORPHISMINTERPRETATIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we study the variety R2 of square root rings, that is, commutative rings with unit, of characteristic two, with the square root as an additional operation. We prove that this variety is generated by the finite Galois fields GF ( 2k ) and we establish an equivalence between R2 and the variety BA δ of Boolean algebras with a distinguished automorphism. Via this equivalence, we will be able to obtain properties of R2 from the results proved in [M. Abad, J.P. Díaz Varela, M. Zander, Boolean algebras with a distinguished automorphism, Rep. Math. Logic 37 (2003) 101-112].Fil: Díaz Varela, José Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaAcademic Press Inc Elsevier Science2006-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/96058Díaz Varela, José Patricio; Equivalence between varieties of square root rings and Boolean algebras with a distinguished automorphism; Academic Press Inc Elsevier Science; Journal of Algebra; 299; 1; 5-2006; 190-1970021-8693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2006.02.017info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869306001165info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:45:09Zoai:ri.conicet.gov.ar:11336/96058instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:45:09.345CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Equivalence between varieties of square root rings and Boolean algebras with a distinguished automorphism |
title |
Equivalence between varieties of square root rings and Boolean algebras with a distinguished automorphism |
spellingShingle |
Equivalence between varieties of square root rings and Boolean algebras with a distinguished automorphism Díaz Varela, José Patricio BOOLEAN ALGEBRAS COMMUTATIVE RINGS FINITE FIELDS FROBENIUS AUTOMORPHISM INTERPRETATIONS |
title_short |
Equivalence between varieties of square root rings and Boolean algebras with a distinguished automorphism |
title_full |
Equivalence between varieties of square root rings and Boolean algebras with a distinguished automorphism |
title_fullStr |
Equivalence between varieties of square root rings and Boolean algebras with a distinguished automorphism |
title_full_unstemmed |
Equivalence between varieties of square root rings and Boolean algebras with a distinguished automorphism |
title_sort |
Equivalence between varieties of square root rings and Boolean algebras with a distinguished automorphism |
dc.creator.none.fl_str_mv |
Díaz Varela, José Patricio |
author |
Díaz Varela, José Patricio |
author_facet |
Díaz Varela, José Patricio |
author_role |
author |
dc.subject.none.fl_str_mv |
BOOLEAN ALGEBRAS COMMUTATIVE RINGS FINITE FIELDS FROBENIUS AUTOMORPHISM INTERPRETATIONS |
topic |
BOOLEAN ALGEBRAS COMMUTATIVE RINGS FINITE FIELDS FROBENIUS AUTOMORPHISM INTERPRETATIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we study the variety R2 of square root rings, that is, commutative rings with unit, of characteristic two, with the square root as an additional operation. We prove that this variety is generated by the finite Galois fields GF ( 2k ) and we establish an equivalence between R2 and the variety BA δ of Boolean algebras with a distinguished automorphism. Via this equivalence, we will be able to obtain properties of R2 from the results proved in [M. Abad, J.P. Díaz Varela, M. Zander, Boolean algebras with a distinguished automorphism, Rep. Math. Logic 37 (2003) 101-112]. Fil: Díaz Varela, José Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina |
description |
In this paper we study the variety R2 of square root rings, that is, commutative rings with unit, of characteristic two, with the square root as an additional operation. We prove that this variety is generated by the finite Galois fields GF ( 2k ) and we establish an equivalence between R2 and the variety BA δ of Boolean algebras with a distinguished automorphism. Via this equivalence, we will be able to obtain properties of R2 from the results proved in [M. Abad, J.P. Díaz Varela, M. Zander, Boolean algebras with a distinguished automorphism, Rep. Math. Logic 37 (2003) 101-112]. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/96058 Díaz Varela, José Patricio; Equivalence between varieties of square root rings and Boolean algebras with a distinguished automorphism; Academic Press Inc Elsevier Science; Journal of Algebra; 299; 1; 5-2006; 190-197 0021-8693 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/96058 |
identifier_str_mv |
Díaz Varela, José Patricio; Equivalence between varieties of square root rings and Boolean algebras with a distinguished automorphism; Academic Press Inc Elsevier Science; Journal of Algebra; 299; 1; 5-2006; 190-197 0021-8693 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2006.02.017 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869306001165 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614490715324416 |
score |
13.070432 |