Bouligand-Severi tangents in MV-algebras
- Autores
- Busaniche, Manuela; Mundici, Daniele
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In their recent seminal paper published in the Annals of Pure and Applied Logic, Dubuc and Poveda call an MV-algebra A strongly semisimple if all principal quotients of A are semisimple. All boolean algebras are strongly semisimple, and so are all finitely presented MV-algebras. We show that for any 1-generator MV-algebra semisimplicity is equivalent to strong semisimplicity. Further, a semisimple 2-generator MV-algebra A is strongly semisimple if and only if its maximal spectral space m(A) does not have any rational Bouligand-Severi tangents at its rational points. In general, when A is finitely generated and m(A) has a Bouligand-Severi tangent then A is not strongly semisimple.
Fil: Busaniche, Manuela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina. Universidad Nacional del Litoral; Argentina
Fil: Mundici, Daniele. Universitá degli Studi di Firenze. Dipartimento di Matematica e Informatica; Italia - Materia
-
Mv-Algebra
Strongly Semisimple
Bouligand–Severi Tangent
Łukasiewicz Logic
Syntactic And Semantic Consequence
Yosida Frame
Semisimple
Logically Complete Mv-Algebra - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/13885
Ver los metadatos del registro completo
| id |
CONICETDig_9a5fc5f7ec811137dcb1e2c82feaa0f9 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/13885 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Bouligand-Severi tangents in MV-algebrasBusaniche, ManuelaMundici, DanieleMv-AlgebraStrongly SemisimpleBouligand–Severi TangentŁukasiewicz LogicSyntactic And Semantic ConsequenceYosida FrameSemisimpleLogically Complete Mv-Algebrahttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In their recent seminal paper published in the Annals of Pure and Applied Logic, Dubuc and Poveda call an MV-algebra A strongly semisimple if all principal quotients of A are semisimple. All boolean algebras are strongly semisimple, and so are all finitely presented MV-algebras. We show that for any 1-generator MV-algebra semisimplicity is equivalent to strong semisimplicity. Further, a semisimple 2-generator MV-algebra A is strongly semisimple if and only if its maximal spectral space m(A) does not have any rational Bouligand-Severi tangents at its rational points. In general, when A is finitely generated and m(A) has a Bouligand-Severi tangent then A is not strongly semisimple.Fil: Busaniche, Manuela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina. Universidad Nacional del Litoral; ArgentinaFil: Mundici, Daniele. Universitá degli Studi di Firenze. Dipartimento di Matematica e Informatica; ItaliaUniversidad Autónoma de Madrid2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/13885Busaniche, Manuela; Mundici, Daniele; Bouligand-Severi tangents in MV-algebras; Universidad Autónoma de Madrid; Revista Matematica Iberoamericana; 30; 1; 4-2014; 191-2010213-2230enginfo:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.4171/RMI/774info:eu-repo/semantics/altIdentifier/url/http://www.ems-ph.org/journals/show_abstract.php?issn=0213-2230&vol=30&iss=1&rank=9info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T09:40:49Zoai:ri.conicet.gov.ar:11336/13885instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 09:40:49.303CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Bouligand-Severi tangents in MV-algebras |
| title |
Bouligand-Severi tangents in MV-algebras |
| spellingShingle |
Bouligand-Severi tangents in MV-algebras Busaniche, Manuela Mv-Algebra Strongly Semisimple Bouligand–Severi Tangent Łukasiewicz Logic Syntactic And Semantic Consequence Yosida Frame Semisimple Logically Complete Mv-Algebra |
| title_short |
Bouligand-Severi tangents in MV-algebras |
| title_full |
Bouligand-Severi tangents in MV-algebras |
| title_fullStr |
Bouligand-Severi tangents in MV-algebras |
| title_full_unstemmed |
Bouligand-Severi tangents in MV-algebras |
| title_sort |
Bouligand-Severi tangents in MV-algebras |
| dc.creator.none.fl_str_mv |
Busaniche, Manuela Mundici, Daniele |
| author |
Busaniche, Manuela |
| author_facet |
Busaniche, Manuela Mundici, Daniele |
| author_role |
author |
| author2 |
Mundici, Daniele |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Mv-Algebra Strongly Semisimple Bouligand–Severi Tangent Łukasiewicz Logic Syntactic And Semantic Consequence Yosida Frame Semisimple Logically Complete Mv-Algebra |
| topic |
Mv-Algebra Strongly Semisimple Bouligand–Severi Tangent Łukasiewicz Logic Syntactic And Semantic Consequence Yosida Frame Semisimple Logically Complete Mv-Algebra |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In their recent seminal paper published in the Annals of Pure and Applied Logic, Dubuc and Poveda call an MV-algebra A strongly semisimple if all principal quotients of A are semisimple. All boolean algebras are strongly semisimple, and so are all finitely presented MV-algebras. We show that for any 1-generator MV-algebra semisimplicity is equivalent to strong semisimplicity. Further, a semisimple 2-generator MV-algebra A is strongly semisimple if and only if its maximal spectral space m(A) does not have any rational Bouligand-Severi tangents at its rational points. In general, when A is finitely generated and m(A) has a Bouligand-Severi tangent then A is not strongly semisimple. Fil: Busaniche, Manuela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina. Universidad Nacional del Litoral; Argentina Fil: Mundici, Daniele. Universitá degli Studi di Firenze. Dipartimento di Matematica e Informatica; Italia |
| description |
In their recent seminal paper published in the Annals of Pure and Applied Logic, Dubuc and Poveda call an MV-algebra A strongly semisimple if all principal quotients of A are semisimple. All boolean algebras are strongly semisimple, and so are all finitely presented MV-algebras. We show that for any 1-generator MV-algebra semisimplicity is equivalent to strong semisimplicity. Further, a semisimple 2-generator MV-algebra A is strongly semisimple if and only if its maximal spectral space m(A) does not have any rational Bouligand-Severi tangents at its rational points. In general, when A is finitely generated and m(A) has a Bouligand-Severi tangent then A is not strongly semisimple. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/13885 Busaniche, Manuela; Mundici, Daniele; Bouligand-Severi tangents in MV-algebras; Universidad Autónoma de Madrid; Revista Matematica Iberoamericana; 30; 1; 4-2014; 191-201 0213-2230 |
| url |
http://hdl.handle.net/11336/13885 |
| identifier_str_mv |
Busaniche, Manuela; Mundici, Daniele; Bouligand-Severi tangents in MV-algebras; Universidad Autónoma de Madrid; Revista Matematica Iberoamericana; 30; 1; 4-2014; 191-201 0213-2230 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.4171/RMI/774 info:eu-repo/semantics/altIdentifier/url/http://www.ems-ph.org/journals/show_abstract.php?issn=0213-2230&vol=30&iss=1&rank=9 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad Autónoma de Madrid |
| publisher.none.fl_str_mv |
Universidad Autónoma de Madrid |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847976957432561664 |
| score |
13.087074 |