On the free implicative semilattice extension of a Hilbert algebra
- Autores
- Celani, Sergio Arturo; Jansana, Ramon
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Hilbert algebras provide the equivalent algebraic semantics in the sense of Blok and Pigozzi to the implication fragment of intuitionistic logic. They are closely related to implicative semilattices. Porta proved that every Hilbert algebra has a free implicative semilattice extension. In this paper we introduce the notion of an optimal deductive filter of a Hilbert algebra and use it to provide a different proof of the existence of the free implicative semilattice extension of a Hilbert algebra as well as a simplified characterization of it. The optimal deductive filters turn out to be the traces in the Hilbert algebra of the prime filters of the distributive lattice free extension of the free implicative semilattice extension of the Hilbert algebra. To define the concept of optimal deductive filter we need to introduce the concept of a strong Frink ideal for Hilbert algebras which generalizes the concept of a Frink ideal for posets.
Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires; Argentina. Universidad Central de Barcelona; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
Fil: Jansana, Ramon. Universidad Nacional del Centro de la Provincia de Buenos Aires; Argentina. Universidad de Barcelona; España - Materia
-
FREE EXTENSIONS
HILBERT ALGEBRAS
IMPLICATIVE SEMILATTICES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/199316
Ver los metadatos del registro completo
id |
CONICETDig_973353cb2ae7fffd2a0f3b527b0a2ffe |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/199316 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the free implicative semilattice extension of a Hilbert algebraCelani, Sergio ArturoJansana, RamonFREE EXTENSIONSHILBERT ALGEBRASIMPLICATIVE SEMILATTICEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Hilbert algebras provide the equivalent algebraic semantics in the sense of Blok and Pigozzi to the implication fragment of intuitionistic logic. They are closely related to implicative semilattices. Porta proved that every Hilbert algebra has a free implicative semilattice extension. In this paper we introduce the notion of an optimal deductive filter of a Hilbert algebra and use it to provide a different proof of the existence of the free implicative semilattice extension of a Hilbert algebra as well as a simplified characterization of it. The optimal deductive filters turn out to be the traces in the Hilbert algebra of the prime filters of the distributive lattice free extension of the free implicative semilattice extension of the Hilbert algebra. To define the concept of optimal deductive filter we need to introduce the concept of a strong Frink ideal for Hilbert algebras which generalizes the concept of a Frink ideal for posets.Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires; Argentina. Universidad Central de Barcelona; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; ArgentinaFil: Jansana, Ramon. Universidad Nacional del Centro de la Provincia de Buenos Aires; Argentina. Universidad de Barcelona; EspañaWiley VCH Verlag2012-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/199316Celani, Sergio Arturo; Jansana, Ramon; On the free implicative semilattice extension of a Hilbert algebra; Wiley VCH Verlag; Mathematical Logic Quarterly; 58; 3; 5-2012; 188-2070942-5616CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/malq.201020098info:eu-repo/semantics/altIdentifier/doi/10.1002/malq.201020098info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:23Zoai:ri.conicet.gov.ar:11336/199316instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:23.967CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the free implicative semilattice extension of a Hilbert algebra |
title |
On the free implicative semilattice extension of a Hilbert algebra |
spellingShingle |
On the free implicative semilattice extension of a Hilbert algebra Celani, Sergio Arturo FREE EXTENSIONS HILBERT ALGEBRAS IMPLICATIVE SEMILATTICES |
title_short |
On the free implicative semilattice extension of a Hilbert algebra |
title_full |
On the free implicative semilattice extension of a Hilbert algebra |
title_fullStr |
On the free implicative semilattice extension of a Hilbert algebra |
title_full_unstemmed |
On the free implicative semilattice extension of a Hilbert algebra |
title_sort |
On the free implicative semilattice extension of a Hilbert algebra |
dc.creator.none.fl_str_mv |
Celani, Sergio Arturo Jansana, Ramon |
author |
Celani, Sergio Arturo |
author_facet |
Celani, Sergio Arturo Jansana, Ramon |
author_role |
author |
author2 |
Jansana, Ramon |
author2_role |
author |
dc.subject.none.fl_str_mv |
FREE EXTENSIONS HILBERT ALGEBRAS IMPLICATIVE SEMILATTICES |
topic |
FREE EXTENSIONS HILBERT ALGEBRAS IMPLICATIVE SEMILATTICES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Hilbert algebras provide the equivalent algebraic semantics in the sense of Blok and Pigozzi to the implication fragment of intuitionistic logic. They are closely related to implicative semilattices. Porta proved that every Hilbert algebra has a free implicative semilattice extension. In this paper we introduce the notion of an optimal deductive filter of a Hilbert algebra and use it to provide a different proof of the existence of the free implicative semilattice extension of a Hilbert algebra as well as a simplified characterization of it. The optimal deductive filters turn out to be the traces in the Hilbert algebra of the prime filters of the distributive lattice free extension of the free implicative semilattice extension of the Hilbert algebra. To define the concept of optimal deductive filter we need to introduce the concept of a strong Frink ideal for Hilbert algebras which generalizes the concept of a Frink ideal for posets. Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires; Argentina. Universidad Central de Barcelona; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina Fil: Jansana, Ramon. Universidad Nacional del Centro de la Provincia de Buenos Aires; Argentina. Universidad de Barcelona; España |
description |
Hilbert algebras provide the equivalent algebraic semantics in the sense of Blok and Pigozzi to the implication fragment of intuitionistic logic. They are closely related to implicative semilattices. Porta proved that every Hilbert algebra has a free implicative semilattice extension. In this paper we introduce the notion of an optimal deductive filter of a Hilbert algebra and use it to provide a different proof of the existence of the free implicative semilattice extension of a Hilbert algebra as well as a simplified characterization of it. The optimal deductive filters turn out to be the traces in the Hilbert algebra of the prime filters of the distributive lattice free extension of the free implicative semilattice extension of the Hilbert algebra. To define the concept of optimal deductive filter we need to introduce the concept of a strong Frink ideal for Hilbert algebras which generalizes the concept of a Frink ideal for posets. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/199316 Celani, Sergio Arturo; Jansana, Ramon; On the free implicative semilattice extension of a Hilbert algebra; Wiley VCH Verlag; Mathematical Logic Quarterly; 58; 3; 5-2012; 188-207 0942-5616 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/199316 |
identifier_str_mv |
Celani, Sergio Arturo; Jansana, Ramon; On the free implicative semilattice extension of a Hilbert algebra; Wiley VCH Verlag; Mathematical Logic Quarterly; 58; 3; 5-2012; 188-207 0942-5616 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/malq.201020098 info:eu-repo/semantics/altIdentifier/doi/10.1002/malq.201020098 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley VCH Verlag |
publisher.none.fl_str_mv |
Wiley VCH Verlag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269156107354112 |
score |
13.13397 |