Variations of the free implicative semilattice extension of a Hilbert algebra
- Autores
- Castiglioni, José Luis; San Martín, Hernán Javier
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Celani and Jansana (Math Log Q 58(3):188–207, 2012) give an explicit description of the free implicative semilattice extension of a Hilbert algebra. In this paper, we give an alternative path conducing to this construction. Furthermore, following our procedure, we show that an adjunction can be obtained between the algebraic categories of Hilbert algebras with supremum and that of generalized Heyting algebras. Finally, in the last section, we describe a functor from the algebraic category of Hilbert algebras to that of generalized Heyting algebras, of possible independent interest.
Fil: Castiglioni, José Luis. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: San Martín, Hernán Javier. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina - Materia
-
FREE ALGEBRAS
HILBERT ALGEBRAS
IMPLICATIVE SEMILATTICE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/94687
Ver los metadatos del registro completo
id |
CONICETDig_9d0431affaffe124e40f8225bde53a2c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/94687 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Variations of the free implicative semilattice extension of a Hilbert algebraCastiglioni, José LuisSan Martín, Hernán JavierFREE ALGEBRASHILBERT ALGEBRASIMPLICATIVE SEMILATTICEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Celani and Jansana (Math Log Q 58(3):188–207, 2012) give an explicit description of the free implicative semilattice extension of a Hilbert algebra. In this paper, we give an alternative path conducing to this construction. Furthermore, following our procedure, we show that an adjunction can be obtained between the algebraic categories of Hilbert algebras with supremum and that of generalized Heyting algebras. Finally, in the last section, we describe a functor from the algebraic category of Hilbert algebras to that of generalized Heyting algebras, of possible independent interest.Fil: Castiglioni, José Luis. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: San Martín, Hernán Javier. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaSpringer Verlag Berlín2019-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/94687Castiglioni, José Luis; San Martín, Hernán Javier; Variations of the free implicative semilattice extension of a Hilbert algebra; Springer Verlag Berlín; Soft Computing; 23; 13; 7-2019; 4633–46411432-76431433-7479CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s00500-018-3426-0info:eu-repo/semantics/altIdentifier/doi/10.1007/s00500-018-3426-0info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1807.02423info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:09Zoai:ri.conicet.gov.ar:11336/94687instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:09.643CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Variations of the free implicative semilattice extension of a Hilbert algebra |
title |
Variations of the free implicative semilattice extension of a Hilbert algebra |
spellingShingle |
Variations of the free implicative semilattice extension of a Hilbert algebra Castiglioni, José Luis FREE ALGEBRAS HILBERT ALGEBRAS IMPLICATIVE SEMILATTICE |
title_short |
Variations of the free implicative semilattice extension of a Hilbert algebra |
title_full |
Variations of the free implicative semilattice extension of a Hilbert algebra |
title_fullStr |
Variations of the free implicative semilattice extension of a Hilbert algebra |
title_full_unstemmed |
Variations of the free implicative semilattice extension of a Hilbert algebra |
title_sort |
Variations of the free implicative semilattice extension of a Hilbert algebra |
dc.creator.none.fl_str_mv |
Castiglioni, José Luis San Martín, Hernán Javier |
author |
Castiglioni, José Luis |
author_facet |
Castiglioni, José Luis San Martín, Hernán Javier |
author_role |
author |
author2 |
San Martín, Hernán Javier |
author2_role |
author |
dc.subject.none.fl_str_mv |
FREE ALGEBRAS HILBERT ALGEBRAS IMPLICATIVE SEMILATTICE |
topic |
FREE ALGEBRAS HILBERT ALGEBRAS IMPLICATIVE SEMILATTICE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Celani and Jansana (Math Log Q 58(3):188–207, 2012) give an explicit description of the free implicative semilattice extension of a Hilbert algebra. In this paper, we give an alternative path conducing to this construction. Furthermore, following our procedure, we show that an adjunction can be obtained between the algebraic categories of Hilbert algebras with supremum and that of generalized Heyting algebras. Finally, in the last section, we describe a functor from the algebraic category of Hilbert algebras to that of generalized Heyting algebras, of possible independent interest. Fil: Castiglioni, José Luis. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: San Martín, Hernán Javier. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina |
description |
Celani and Jansana (Math Log Q 58(3):188–207, 2012) give an explicit description of the free implicative semilattice extension of a Hilbert algebra. In this paper, we give an alternative path conducing to this construction. Furthermore, following our procedure, we show that an adjunction can be obtained between the algebraic categories of Hilbert algebras with supremum and that of generalized Heyting algebras. Finally, in the last section, we describe a functor from the algebraic category of Hilbert algebras to that of generalized Heyting algebras, of possible independent interest. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/94687 Castiglioni, José Luis; San Martín, Hernán Javier; Variations of the free implicative semilattice extension of a Hilbert algebra; Springer Verlag Berlín; Soft Computing; 23; 13; 7-2019; 4633–4641 1432-7643 1433-7479 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/94687 |
identifier_str_mv |
Castiglioni, José Luis; San Martín, Hernán Javier; Variations of the free implicative semilattice extension of a Hilbert algebra; Springer Verlag Berlín; Soft Computing; 23; 13; 7-2019; 4633–4641 1432-7643 1433-7479 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s00500-018-3426-0 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00500-018-3426-0 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1807.02423 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer Verlag Berlín |
publisher.none.fl_str_mv |
Springer Verlag Berlín |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269327336669184 |
score |
13.13397 |