Improvement and generalization of ABCD method with Bayesian inference
- Autores
- Alvarez, Ezequiel; Da Rold, Leandro; Szewc, Manuel; Szynkman, Alejandro Andrés; Tanco, Santiago Andrés; Tarutina, Tatiana
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- To find New Physics or to refine our knowledge of the Standard Model at the LHC is an enterprise that involves many factors, such as the capabilities and the performance of the accelerator and detectors, the use and exploitation of the available information, the design of search strategies and observables, as well as the proposal of new models. We focus on the use of the information and pour our effort in re-thinking the usual datadriven ABCD method to improve it and to generalize it using Bayesian Machine Learning techniques and tools. We propose that a dataset consisting of a signal and many backgrounds is well described through a mixture model. Signal, backgrounds and their relative fractions in the sample can be well extracted by exploiting the prior knowledge and the dependence between the different observables at the event-by-event level with Bayesian tools. We show how, in contrast to the ABCD method, one can take advantage of understanding some properties of the different backgrounds and of having more than two independent observables to measure in each event. In addition, instead of regions defined through hard cuts, the Bayesian framework uses the information of continuous distribution to obtain soft-assignments of the events which are statistically more robust. To compare both methods we use a toy problem inspired by p p → hh → b¯bb¯b, selecting a reduced and simplified number of processes and analysing the flavor of the four jets and the invariant mass of the jet-pairs, modeled with simplified distributions. Taking advantage of all this information, and starting from a combination of biased and agnostic priors, leads us to a very good posterior once we use the Bayesian framework to exploit the data and the mutual information of the observables at the event-by-event level. We show how, in this simplified model, the Bayesian framework outperforms the ABCD method sensitivity in obtaining the signal fraction in scenarios with 1% and 0.5% true signal fractions in the dataset. We also show that the method is robust against the absence of signal. We discuss potential prospects for taking this Bayesian data-driven paradigm into more realistic scenarios.
Fil: Alvarez, Ezequiel. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Físicas. - Universidad Nacional de San Martín. Instituto de Ciencias Físicas; Argentina
Fil: Da Rold, Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina
Fil: Szewc, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Cincinnati; Estados Unidos
Fil: Szynkman, Alejandro Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Tanco, Santiago Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Tarutina, Tatiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina - Materia
-
NEW PHYSICS
BAYESIAN INFERENCE
ABCD METHOD - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/265958
Ver los metadatos del registro completo
| id |
CONICETDig_2a47523fb0075f5572466e510805cd25 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/265958 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Improvement and generalization of ABCD method with Bayesian inferenceAlvarez, EzequielDa Rold, LeandroSzewc, ManuelSzynkman, Alejandro AndrésTanco, Santiago AndrésTarutina, TatianaNEW PHYSICSBAYESIAN INFERENCEABCD METHODhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1To find New Physics or to refine our knowledge of the Standard Model at the LHC is an enterprise that involves many factors, such as the capabilities and the performance of the accelerator and detectors, the use and exploitation of the available information, the design of search strategies and observables, as well as the proposal of new models. We focus on the use of the information and pour our effort in re-thinking the usual datadriven ABCD method to improve it and to generalize it using Bayesian Machine Learning techniques and tools. We propose that a dataset consisting of a signal and many backgrounds is well described through a mixture model. Signal, backgrounds and their relative fractions in the sample can be well extracted by exploiting the prior knowledge and the dependence between the different observables at the event-by-event level with Bayesian tools. We show how, in contrast to the ABCD method, one can take advantage of understanding some properties of the different backgrounds and of having more than two independent observables to measure in each event. In addition, instead of regions defined through hard cuts, the Bayesian framework uses the information of continuous distribution to obtain soft-assignments of the events which are statistically more robust. To compare both methods we use a toy problem inspired by p p → hh → b¯bb¯b, selecting a reduced and simplified number of processes and analysing the flavor of the four jets and the invariant mass of the jet-pairs, modeled with simplified distributions. Taking advantage of all this information, and starting from a combination of biased and agnostic priors, leads us to a very good posterior once we use the Bayesian framework to exploit the data and the mutual information of the observables at the event-by-event level. We show how, in this simplified model, the Bayesian framework outperforms the ABCD method sensitivity in obtaining the signal fraction in scenarios with 1% and 0.5% true signal fractions in the dataset. We also show that the method is robust against the absence of signal. We discuss potential prospects for taking this Bayesian data-driven paradigm into more realistic scenarios.Fil: Alvarez, Ezequiel. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Físicas. - Universidad Nacional de San Martín. Instituto de Ciencias Físicas; ArgentinaFil: Da Rold, Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; ArgentinaFil: Szewc, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Cincinnati; Estados UnidosFil: Szynkman, Alejandro Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Tanco, Santiago Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Tarutina, Tatiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaSciPost Foundation2024-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/265958Alvarez, Ezequiel; Da Rold, Leandro; Szewc, Manuel; Szynkman, Alejandro Andrés; Tanco, Santiago Andrés; et al.; Improvement and generalization of ABCD method with Bayesian inference; SciPost Foundation; SciPost Physics Core; 7; 3; 7-2024; 1-242666-9366CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://scipost.org/10.21468/SciPostPhysCore.7.3.043info:eu-repo/semantics/altIdentifier/doi/10.21468/SciPostPhysCore.7.3.043info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:28:36Zoai:ri.conicet.gov.ar:11336/265958instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:28:36.608CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Improvement and generalization of ABCD method with Bayesian inference |
| title |
Improvement and generalization of ABCD method with Bayesian inference |
| spellingShingle |
Improvement and generalization of ABCD method with Bayesian inference Alvarez, Ezequiel NEW PHYSICS BAYESIAN INFERENCE ABCD METHOD |
| title_short |
Improvement and generalization of ABCD method with Bayesian inference |
| title_full |
Improvement and generalization of ABCD method with Bayesian inference |
| title_fullStr |
Improvement and generalization of ABCD method with Bayesian inference |
| title_full_unstemmed |
Improvement and generalization of ABCD method with Bayesian inference |
| title_sort |
Improvement and generalization of ABCD method with Bayesian inference |
| dc.creator.none.fl_str_mv |
Alvarez, Ezequiel Da Rold, Leandro Szewc, Manuel Szynkman, Alejandro Andrés Tanco, Santiago Andrés Tarutina, Tatiana |
| author |
Alvarez, Ezequiel |
| author_facet |
Alvarez, Ezequiel Da Rold, Leandro Szewc, Manuel Szynkman, Alejandro Andrés Tanco, Santiago Andrés Tarutina, Tatiana |
| author_role |
author |
| author2 |
Da Rold, Leandro Szewc, Manuel Szynkman, Alejandro Andrés Tanco, Santiago Andrés Tarutina, Tatiana |
| author2_role |
author author author author author |
| dc.subject.none.fl_str_mv |
NEW PHYSICS BAYESIAN INFERENCE ABCD METHOD |
| topic |
NEW PHYSICS BAYESIAN INFERENCE ABCD METHOD |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
To find New Physics or to refine our knowledge of the Standard Model at the LHC is an enterprise that involves many factors, such as the capabilities and the performance of the accelerator and detectors, the use and exploitation of the available information, the design of search strategies and observables, as well as the proposal of new models. We focus on the use of the information and pour our effort in re-thinking the usual datadriven ABCD method to improve it and to generalize it using Bayesian Machine Learning techniques and tools. We propose that a dataset consisting of a signal and many backgrounds is well described through a mixture model. Signal, backgrounds and their relative fractions in the sample can be well extracted by exploiting the prior knowledge and the dependence between the different observables at the event-by-event level with Bayesian tools. We show how, in contrast to the ABCD method, one can take advantage of understanding some properties of the different backgrounds and of having more than two independent observables to measure in each event. In addition, instead of regions defined through hard cuts, the Bayesian framework uses the information of continuous distribution to obtain soft-assignments of the events which are statistically more robust. To compare both methods we use a toy problem inspired by p p → hh → b¯bb¯b, selecting a reduced and simplified number of processes and analysing the flavor of the four jets and the invariant mass of the jet-pairs, modeled with simplified distributions. Taking advantage of all this information, and starting from a combination of biased and agnostic priors, leads us to a very good posterior once we use the Bayesian framework to exploit the data and the mutual information of the observables at the event-by-event level. We show how, in this simplified model, the Bayesian framework outperforms the ABCD method sensitivity in obtaining the signal fraction in scenarios with 1% and 0.5% true signal fractions in the dataset. We also show that the method is robust against the absence of signal. We discuss potential prospects for taking this Bayesian data-driven paradigm into more realistic scenarios. Fil: Alvarez, Ezequiel. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Físicas. - Universidad Nacional de San Martín. Instituto de Ciencias Físicas; Argentina Fil: Da Rold, Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina Fil: Szewc, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Cincinnati; Estados Unidos Fil: Szynkman, Alejandro Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Tanco, Santiago Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Tarutina, Tatiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina |
| description |
To find New Physics or to refine our knowledge of the Standard Model at the LHC is an enterprise that involves many factors, such as the capabilities and the performance of the accelerator and detectors, the use and exploitation of the available information, the design of search strategies and observables, as well as the proposal of new models. We focus on the use of the information and pour our effort in re-thinking the usual datadriven ABCD method to improve it and to generalize it using Bayesian Machine Learning techniques and tools. We propose that a dataset consisting of a signal and many backgrounds is well described through a mixture model. Signal, backgrounds and their relative fractions in the sample can be well extracted by exploiting the prior knowledge and the dependence between the different observables at the event-by-event level with Bayesian tools. We show how, in contrast to the ABCD method, one can take advantage of understanding some properties of the different backgrounds and of having more than two independent observables to measure in each event. In addition, instead of regions defined through hard cuts, the Bayesian framework uses the information of continuous distribution to obtain soft-assignments of the events which are statistically more robust. To compare both methods we use a toy problem inspired by p p → hh → b¯bb¯b, selecting a reduced and simplified number of processes and analysing the flavor of the four jets and the invariant mass of the jet-pairs, modeled with simplified distributions. Taking advantage of all this information, and starting from a combination of biased and agnostic priors, leads us to a very good posterior once we use the Bayesian framework to exploit the data and the mutual information of the observables at the event-by-event level. We show how, in this simplified model, the Bayesian framework outperforms the ABCD method sensitivity in obtaining the signal fraction in scenarios with 1% and 0.5% true signal fractions in the dataset. We also show that the method is robust against the absence of signal. We discuss potential prospects for taking this Bayesian data-driven paradigm into more realistic scenarios. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-07 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/265958 Alvarez, Ezequiel; Da Rold, Leandro; Szewc, Manuel; Szynkman, Alejandro Andrés; Tanco, Santiago Andrés; et al.; Improvement and generalization of ABCD method with Bayesian inference; SciPost Foundation; SciPost Physics Core; 7; 3; 7-2024; 1-24 2666-9366 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/265958 |
| identifier_str_mv |
Alvarez, Ezequiel; Da Rold, Leandro; Szewc, Manuel; Szynkman, Alejandro Andrés; Tanco, Santiago Andrés; et al.; Improvement and generalization of ABCD method with Bayesian inference; SciPost Foundation; SciPost Physics Core; 7; 3; 7-2024; 1-24 2666-9366 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://scipost.org/10.21468/SciPostPhysCore.7.3.043 info:eu-repo/semantics/altIdentifier/doi/10.21468/SciPostPhysCore.7.3.043 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
SciPost Foundation |
| publisher.none.fl_str_mv |
SciPost Foundation |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847977947499069440 |
| score |
13.087074 |