The number of extreme points of tropical polyhedra

Autores
Allamigeon, Xavier; Gaubert, Stéphane; Katz, Ricardo David
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The celebrated upper bound theorem of McMullen determines the maximal number of extreme points of a polyhedron in terms of its dimension and the number of constraints which define it, showing that the maximum is attained by the polar of the cyclic polytope. We show that the same bound is valid in the tropical setting, up to a trivial modification. Then, we study the tropical analogues of the polars of a family of cyclic polytopes equipped with a sign pattern. We construct bijections between the extreme points of these polars and lattice paths depending on the sign pattern, from which we deduce explicit bounds for the number of extreme points, showing in particular that the upper bound is asymptotically tight as the dimension tends to infinity, keeping the number of constraints fixed.  When transposed to the classical case, the previous constructions yield some lattice path generalizations of Gale´s evenness criterion.
Fil: Allamigeon, Xavier. No especifíca;
Fil: Gaubert, Stéphane. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Katz, Ricardo David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Instituto de Matemática "Beppo Levi"; Argentina
Materia
TROPICAL CONVEXITY
MAX-PLUS CONVEXITY
UPPER BOUND THEOREM
EXTREME POINTS
LATTICE PATHS
GALE'S EVENNESS CONDITION
CYCLIC POLYTOPE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/271407

id CONICETDig_55a2e361a626440c9d6abeafcb740d44
oai_identifier_str oai:ri.conicet.gov.ar:11336/271407
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The number of extreme points of tropical polyhedraAllamigeon, XavierGaubert, StéphaneKatz, Ricardo DavidTROPICAL CONVEXITYMAX-PLUS CONVEXITYUPPER BOUND THEOREMEXTREME POINTSLATTICE PATHSGALE'S EVENNESS CONDITIONCYCLIC POLYTOPEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The celebrated upper bound theorem of McMullen determines the maximal number of extreme points of a polyhedron in terms of its dimension and the number of constraints which define it, showing that the maximum is attained by the polar of the cyclic polytope. We show that the same bound is valid in the tropical setting, up to a trivial modification. Then, we study the tropical analogues of the polars of a family of cyclic polytopes equipped with a sign pattern. We construct bijections between the extreme points of these polars and lattice paths depending on the sign pattern, from which we deduce explicit bounds for the number of extreme points, showing in particular that the upper bound is asymptotically tight as the dimension tends to infinity, keeping the number of constraints fixed.  When transposed to the classical case, the previous constructions yield some lattice path generalizations of Gale´s evenness criterion.Fil: Allamigeon, Xavier. No especifíca;Fil: Gaubert, Stéphane. Institut National de Recherche en Informatique et en Automatique; FranciaFil: Katz, Ricardo David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Instituto de Matemática "Beppo Levi"; ArgentinaAcademic Press Inc Elsevier Science2011-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/271407Allamigeon, Xavier; Gaubert, Stéphane; Katz, Ricardo David; The number of extreme points of tropical polyhedra; Academic Press Inc Elsevier Science; Journal of Combinatorial Theory Series A; 118; 1; 1-2011; 162-1890097-3165CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0097316510000725info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jcta.2010.04.003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T09:34:30Zoai:ri.conicet.gov.ar:11336/271407instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 09:34:30.627CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The number of extreme points of tropical polyhedra
title The number of extreme points of tropical polyhedra
spellingShingle The number of extreme points of tropical polyhedra
Allamigeon, Xavier
TROPICAL CONVEXITY
MAX-PLUS CONVEXITY
UPPER BOUND THEOREM
EXTREME POINTS
LATTICE PATHS
GALE'S EVENNESS CONDITION
CYCLIC POLYTOPE
title_short The number of extreme points of tropical polyhedra
title_full The number of extreme points of tropical polyhedra
title_fullStr The number of extreme points of tropical polyhedra
title_full_unstemmed The number of extreme points of tropical polyhedra
title_sort The number of extreme points of tropical polyhedra
dc.creator.none.fl_str_mv Allamigeon, Xavier
Gaubert, Stéphane
Katz, Ricardo David
author Allamigeon, Xavier
author_facet Allamigeon, Xavier
Gaubert, Stéphane
Katz, Ricardo David
author_role author
author2 Gaubert, Stéphane
Katz, Ricardo David
author2_role author
author
dc.subject.none.fl_str_mv TROPICAL CONVEXITY
MAX-PLUS CONVEXITY
UPPER BOUND THEOREM
EXTREME POINTS
LATTICE PATHS
GALE'S EVENNESS CONDITION
CYCLIC POLYTOPE
topic TROPICAL CONVEXITY
MAX-PLUS CONVEXITY
UPPER BOUND THEOREM
EXTREME POINTS
LATTICE PATHS
GALE'S EVENNESS CONDITION
CYCLIC POLYTOPE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The celebrated upper bound theorem of McMullen determines the maximal number of extreme points of a polyhedron in terms of its dimension and the number of constraints which define it, showing that the maximum is attained by the polar of the cyclic polytope. We show that the same bound is valid in the tropical setting, up to a trivial modification. Then, we study the tropical analogues of the polars of a family of cyclic polytopes equipped with a sign pattern. We construct bijections between the extreme points of these polars and lattice paths depending on the sign pattern, from which we deduce explicit bounds for the number of extreme points, showing in particular that the upper bound is asymptotically tight as the dimension tends to infinity, keeping the number of constraints fixed.  When transposed to the classical case, the previous constructions yield some lattice path generalizations of Gale´s evenness criterion.
Fil: Allamigeon, Xavier. No especifíca;
Fil: Gaubert, Stéphane. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Katz, Ricardo David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Instituto de Matemática "Beppo Levi"; Argentina
description The celebrated upper bound theorem of McMullen determines the maximal number of extreme points of a polyhedron in terms of its dimension and the number of constraints which define it, showing that the maximum is attained by the polar of the cyclic polytope. We show that the same bound is valid in the tropical setting, up to a trivial modification. Then, we study the tropical analogues of the polars of a family of cyclic polytopes equipped with a sign pattern. We construct bijections between the extreme points of these polars and lattice paths depending on the sign pattern, from which we deduce explicit bounds for the number of extreme points, showing in particular that the upper bound is asymptotically tight as the dimension tends to infinity, keeping the number of constraints fixed.  When transposed to the classical case, the previous constructions yield some lattice path generalizations of Gale´s evenness criterion.
publishDate 2011
dc.date.none.fl_str_mv 2011-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/271407
Allamigeon, Xavier; Gaubert, Stéphane; Katz, Ricardo David; The number of extreme points of tropical polyhedra; Academic Press Inc Elsevier Science; Journal of Combinatorial Theory Series A; 118; 1; 1-2011; 162-189
0097-3165
CONICET Digital
CONICET
url http://hdl.handle.net/11336/271407
identifier_str_mv Allamigeon, Xavier; Gaubert, Stéphane; Katz, Ricardo David; The number of extreme points of tropical polyhedra; Academic Press Inc Elsevier Science; Journal of Combinatorial Theory Series A; 118; 1; 1-2011; 162-189
0097-3165
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0097316510000725
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jcta.2010.04.003
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1847976748723994624
score 13.084122