The number of extreme points of tropical polyhedra
- Autores
- Allamigeon, Xavier; Gaubert, Stéphane; Katz, Ricardo David
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The celebrated upper bound theorem of McMullen determines the maximal number of extreme points of a polyhedron in terms of its dimension and the number of constraints which define it, showing that the maximum is attained by the polar of the cyclic polytope. We show that the same bound is valid in the tropical setting, up to a trivial modification. Then, we study the tropical analogues of the polars of a family of cyclic polytopes equipped with a sign pattern. We construct bijections between the extreme points of these polars and lattice paths depending on the sign pattern, from which we deduce explicit bounds for the number of extreme points, showing in particular that the upper bound is asymptotically tight as the dimension tends to infinity, keeping the number of constraints fixed. When transposed to the classical case, the previous constructions yield some lattice path generalizations of Gale´s evenness criterion.
Fil: Allamigeon, Xavier. No especifíca;
Fil: Gaubert, Stéphane. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Katz, Ricardo David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Instituto de Matemática "Beppo Levi"; Argentina - Materia
-
TROPICAL CONVEXITY
MAX-PLUS CONVEXITY
UPPER BOUND THEOREM
EXTREME POINTS
LATTICE PATHS
GALE'S EVENNESS CONDITION
CYCLIC POLYTOPE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/271407
Ver los metadatos del registro completo
| id |
CONICETDig_55a2e361a626440c9d6abeafcb740d44 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/271407 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
The number of extreme points of tropical polyhedraAllamigeon, XavierGaubert, StéphaneKatz, Ricardo DavidTROPICAL CONVEXITYMAX-PLUS CONVEXITYUPPER BOUND THEOREMEXTREME POINTSLATTICE PATHSGALE'S EVENNESS CONDITIONCYCLIC POLYTOPEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The celebrated upper bound theorem of McMullen determines the maximal number of extreme points of a polyhedron in terms of its dimension and the number of constraints which define it, showing that the maximum is attained by the polar of the cyclic polytope. We show that the same bound is valid in the tropical setting, up to a trivial modification. Then, we study the tropical analogues of the polars of a family of cyclic polytopes equipped with a sign pattern. We construct bijections between the extreme points of these polars and lattice paths depending on the sign pattern, from which we deduce explicit bounds for the number of extreme points, showing in particular that the upper bound is asymptotically tight as the dimension tends to infinity, keeping the number of constraints fixed. When transposed to the classical case, the previous constructions yield some lattice path generalizations of Gale´s evenness criterion.Fil: Allamigeon, Xavier. No especifíca;Fil: Gaubert, Stéphane. Institut National de Recherche en Informatique et en Automatique; FranciaFil: Katz, Ricardo David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Instituto de Matemática "Beppo Levi"; ArgentinaAcademic Press Inc Elsevier Science2011-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/271407Allamigeon, Xavier; Gaubert, Stéphane; Katz, Ricardo David; The number of extreme points of tropical polyhedra; Academic Press Inc Elsevier Science; Journal of Combinatorial Theory Series A; 118; 1; 1-2011; 162-1890097-3165CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0097316510000725info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jcta.2010.04.003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T09:34:30Zoai:ri.conicet.gov.ar:11336/271407instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 09:34:30.627CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
The number of extreme points of tropical polyhedra |
| title |
The number of extreme points of tropical polyhedra |
| spellingShingle |
The number of extreme points of tropical polyhedra Allamigeon, Xavier TROPICAL CONVEXITY MAX-PLUS CONVEXITY UPPER BOUND THEOREM EXTREME POINTS LATTICE PATHS GALE'S EVENNESS CONDITION CYCLIC POLYTOPE |
| title_short |
The number of extreme points of tropical polyhedra |
| title_full |
The number of extreme points of tropical polyhedra |
| title_fullStr |
The number of extreme points of tropical polyhedra |
| title_full_unstemmed |
The number of extreme points of tropical polyhedra |
| title_sort |
The number of extreme points of tropical polyhedra |
| dc.creator.none.fl_str_mv |
Allamigeon, Xavier Gaubert, Stéphane Katz, Ricardo David |
| author |
Allamigeon, Xavier |
| author_facet |
Allamigeon, Xavier Gaubert, Stéphane Katz, Ricardo David |
| author_role |
author |
| author2 |
Gaubert, Stéphane Katz, Ricardo David |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
TROPICAL CONVEXITY MAX-PLUS CONVEXITY UPPER BOUND THEOREM EXTREME POINTS LATTICE PATHS GALE'S EVENNESS CONDITION CYCLIC POLYTOPE |
| topic |
TROPICAL CONVEXITY MAX-PLUS CONVEXITY UPPER BOUND THEOREM EXTREME POINTS LATTICE PATHS GALE'S EVENNESS CONDITION CYCLIC POLYTOPE |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
The celebrated upper bound theorem of McMullen determines the maximal number of extreme points of a polyhedron in terms of its dimension and the number of constraints which define it, showing that the maximum is attained by the polar of the cyclic polytope. We show that the same bound is valid in the tropical setting, up to a trivial modification. Then, we study the tropical analogues of the polars of a family of cyclic polytopes equipped with a sign pattern. We construct bijections between the extreme points of these polars and lattice paths depending on the sign pattern, from which we deduce explicit bounds for the number of extreme points, showing in particular that the upper bound is asymptotically tight as the dimension tends to infinity, keeping the number of constraints fixed. When transposed to the classical case, the previous constructions yield some lattice path generalizations of Gale´s evenness criterion. Fil: Allamigeon, Xavier. No especifíca; Fil: Gaubert, Stéphane. Institut National de Recherche en Informatique et en Automatique; Francia Fil: Katz, Ricardo David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Instituto de Matemática "Beppo Levi"; Argentina |
| description |
The celebrated upper bound theorem of McMullen determines the maximal number of extreme points of a polyhedron in terms of its dimension and the number of constraints which define it, showing that the maximum is attained by the polar of the cyclic polytope. We show that the same bound is valid in the tropical setting, up to a trivial modification. Then, we study the tropical analogues of the polars of a family of cyclic polytopes equipped with a sign pattern. We construct bijections between the extreme points of these polars and lattice paths depending on the sign pattern, from which we deduce explicit bounds for the number of extreme points, showing in particular that the upper bound is asymptotically tight as the dimension tends to infinity, keeping the number of constraints fixed. When transposed to the classical case, the previous constructions yield some lattice path generalizations of Gale´s evenness criterion. |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/271407 Allamigeon, Xavier; Gaubert, Stéphane; Katz, Ricardo David; The number of extreme points of tropical polyhedra; Academic Press Inc Elsevier Science; Journal of Combinatorial Theory Series A; 118; 1; 1-2011; 162-189 0097-3165 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/271407 |
| identifier_str_mv |
Allamigeon, Xavier; Gaubert, Stéphane; Katz, Ricardo David; The number of extreme points of tropical polyhedra; Academic Press Inc Elsevier Science; Journal of Combinatorial Theory Series A; 118; 1; 1-2011; 162-189 0097-3165 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0097316510000725 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jcta.2010.04.003 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
| publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847976748723994624 |
| score |
13.084122 |