Light emission from hydrogenated and unhydrogenated Si-nanocrystal/Si dioxide composites based on PECVD-grown Si-Rich Si oxide films
- Autores
- Comedi, David Mario; Zalloum, O. H. Y.; Wojcik, J.; Mascher, P.
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Hydrogenated and unhydrogenated Si-nanocrystal/Si dioxide (Si-nc/SiO2) composites were obtained from SiyO1-y (y=0.36, 0.42) thin films deposited by plasma-enhanced chemical vapor deposition. The unhydrogenated composites were fabricated by promoting the Si precipitation through thermal annealing of the films in flowing pure Ar at temperatures up to T=1100oC. Fourier transform infrared spectroscopy (FTIR) and elastic recoil detection analysis (ERDA) did not detect any trace of H in these samples. The hydrogenated composites were obtained from identical films by replacing the Ar with (Ar+5%H2) in the annealing step. The photoluminescence (PL) of the composites was studied as a function of the annealing temperature, annealing time and pump laser power. The PL intensity in the Ar-annealed samples increases with increasing annealing temperature, and it increases and then tends to saturation as a function of the annealing time at 1100oC. For the samples annealed in (Ar+5%H2), a qualitatively similar behavior is observed, however, the PL intensity is several hundreds percent larger. The FTIR spectra show that H in these samples incorporates as Si-H bonds. The analysis of the Si-H stretching band, in conjunction with results from previous studies of the Si/SiO2 phase separation process, suggests that a fraction of these bonds are located in the Si/SiO2 interface regions. The dependence of the PL spectra on y, T, and laser power are consistent with the assumption that light emission in both hydrogenated and unhydrogenated Si-nc/SiO2 composites originates from bandgap transitions involving electron quantum confinement in the Si-ncs, the details of the recombination mechanism still being unclear. The PL spectra from the hydrogenated films are skewed to the red as compared to those from the unhydrogenated ones. The bulk of the data indicates that H passivates nonradiative recombination centers, mostly probably Si dangling bonds in the Si-nc/SiO2 regions, thus increasing the number of Si-ncs that contribute to the PL and modifying the distribution of emission wavelengths. The PL intensity in the Ar-annealed samples increases with increasing annealing temperature, and it increases and then tends to saturation as a function of the annealing time at 1100oC. For the samples annealed in (Ar+5%H2), a qualitatively similar behavior is observed, however, the PL intensity is several hundreds percent larger. The FTIR spectra show that H in these samples incorporates as Si-H bonds. The analysis of the Si-H stretching band, in conjunction with results from previous studies of the Si/SiO2 phase separation process, suggests that a fraction of these bonds are located in the Si/SiO2 interface regions. The dependence of the PL spectra on y, T, and laser power are consistent with the assumption that light emission in both hydrogenated and unhydrogenated Si-nc/SiO2 composites originates from bandgap transitions involving electron quantum confinement in the Si-ncs, the details of the recombination mechanism still being unclear. The PL spectra from the hydrogenated films are skewed to the red as compared to those from the unhydrogenated ones. The bulk of the data indicates that H passivates nonradiative recombination centers, mostly probably Si dangling bonds in the Si-nc/SiO2 regions, thus increasing the number of Si-ncs that contribute to the PL and modifying the distribution of emission wavelengths.
Fil: Comedi, David Mario. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física. Laboratorio de Física del Sólido; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
Fil: Zalloum, O. H. Y.. McMaster University; Canadá
Fil: Wojcik, J.. McMaster University; Canadá
Fil: Mascher, P.. McMaster University; Canadá - Materia
-
Hydrogen
Si nanocrystals
Si dioxide
Photoluminescence - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/85497
Ver los metadatos del registro completo
id |
CONICETDig_8b5d25ba1a7425395434b8fc64f885a1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/85497 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Light emission from hydrogenated and unhydrogenated Si-nanocrystal/Si dioxide composites based on PECVD-grown Si-Rich Si oxide filmsComedi, David MarioZalloum, O. H. Y.Wojcik, J.Mascher, P.HydrogenSi nanocrystalsSi dioxidePhotoluminescencehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Hydrogenated and unhydrogenated Si-nanocrystal/Si dioxide (Si-nc/SiO2) composites were obtained from SiyO1-y (y=0.36, 0.42) thin films deposited by plasma-enhanced chemical vapor deposition. The unhydrogenated composites were fabricated by promoting the Si precipitation through thermal annealing of the films in flowing pure Ar at temperatures up to T=1100oC. Fourier transform infrared spectroscopy (FTIR) and elastic recoil detection analysis (ERDA) did not detect any trace of H in these samples. The hydrogenated composites were obtained from identical films by replacing the Ar with (Ar+5%H2) in the annealing step. The photoluminescence (PL) of the composites was studied as a function of the annealing temperature, annealing time and pump laser power. The PL intensity in the Ar-annealed samples increases with increasing annealing temperature, and it increases and then tends to saturation as a function of the annealing time at 1100oC. For the samples annealed in (Ar+5%H2), a qualitatively similar behavior is observed, however, the PL intensity is several hundreds percent larger. The FTIR spectra show that H in these samples incorporates as Si-H bonds. The analysis of the Si-H stretching band, in conjunction with results from previous studies of the Si/SiO2 phase separation process, suggests that a fraction of these bonds are located in the Si/SiO2 interface regions. The dependence of the PL spectra on y, T, and laser power are consistent with the assumption that light emission in both hydrogenated and unhydrogenated Si-nc/SiO2 composites originates from bandgap transitions involving electron quantum confinement in the Si-ncs, the details of the recombination mechanism still being unclear. The PL spectra from the hydrogenated films are skewed to the red as compared to those from the unhydrogenated ones. The bulk of the data indicates that H passivates nonradiative recombination centers, mostly probably Si dangling bonds in the Si-nc/SiO2 regions, thus increasing the number of Si-ncs that contribute to the PL and modifying the distribution of emission wavelengths. The PL intensity in the Ar-annealed samples increases with increasing annealing temperature, and it increases and then tends to saturation as a function of the annealing time at 1100oC. For the samples annealed in (Ar+5%H2), a qualitatively similar behavior is observed, however, the PL intensity is several hundreds percent larger. The FTIR spectra show that H in these samples incorporates as Si-H bonds. The analysis of the Si-H stretching band, in conjunction with results from previous studies of the Si/SiO2 phase separation process, suggests that a fraction of these bonds are located in the Si/SiO2 interface regions. The dependence of the PL spectra on y, T, and laser power are consistent with the assumption that light emission in both hydrogenated and unhydrogenated Si-nc/SiO2 composites originates from bandgap transitions involving electron quantum confinement in the Si-ncs, the details of the recombination mechanism still being unclear. The PL spectra from the hydrogenated films are skewed to the red as compared to those from the unhydrogenated ones. The bulk of the data indicates that H passivates nonradiative recombination centers, mostly probably Si dangling bonds in the Si-nc/SiO2 regions, thus increasing the number of Si-ncs that contribute to the PL and modifying the distribution of emission wavelengths.Fil: Comedi, David Mario. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física. Laboratorio de Física del Sólido; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Zalloum, O. H. Y.. McMaster University; CanadáFil: Wojcik, J.. McMaster University; CanadáFil: Mascher, P.. McMaster University; CanadáInstitute of Electrical and Electronics Engineers2006-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/85497Comedi, David Mario; Zalloum, O. H. Y.; Wojcik, J.; Mascher, P.; Light emission from hydrogenated and unhydrogenated Si-nanocrystal/Si dioxide composites based on PECVD-grown Si-Rich Si oxide films; Institute of Electrical and Electronics Engineers; Ieee Journal Of Selected Topics In Quantum Electronics; 12; 6; 12-2006; 1561-15691077-260XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1109/JSTQE.2006.885388info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/4032636info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:56Zoai:ri.conicet.gov.ar:11336/85497instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:57.175CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Light emission from hydrogenated and unhydrogenated Si-nanocrystal/Si dioxide composites based on PECVD-grown Si-Rich Si oxide films |
title |
Light emission from hydrogenated and unhydrogenated Si-nanocrystal/Si dioxide composites based on PECVD-grown Si-Rich Si oxide films |
spellingShingle |
Light emission from hydrogenated and unhydrogenated Si-nanocrystal/Si dioxide composites based on PECVD-grown Si-Rich Si oxide films Comedi, David Mario Hydrogen Si nanocrystals Si dioxide Photoluminescence |
title_short |
Light emission from hydrogenated and unhydrogenated Si-nanocrystal/Si dioxide composites based on PECVD-grown Si-Rich Si oxide films |
title_full |
Light emission from hydrogenated and unhydrogenated Si-nanocrystal/Si dioxide composites based on PECVD-grown Si-Rich Si oxide films |
title_fullStr |
Light emission from hydrogenated and unhydrogenated Si-nanocrystal/Si dioxide composites based on PECVD-grown Si-Rich Si oxide films |
title_full_unstemmed |
Light emission from hydrogenated and unhydrogenated Si-nanocrystal/Si dioxide composites based on PECVD-grown Si-Rich Si oxide films |
title_sort |
Light emission from hydrogenated and unhydrogenated Si-nanocrystal/Si dioxide composites based on PECVD-grown Si-Rich Si oxide films |
dc.creator.none.fl_str_mv |
Comedi, David Mario Zalloum, O. H. Y. Wojcik, J. Mascher, P. |
author |
Comedi, David Mario |
author_facet |
Comedi, David Mario Zalloum, O. H. Y. Wojcik, J. Mascher, P. |
author_role |
author |
author2 |
Zalloum, O. H. Y. Wojcik, J. Mascher, P. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Hydrogen Si nanocrystals Si dioxide Photoluminescence |
topic |
Hydrogen Si nanocrystals Si dioxide Photoluminescence |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Hydrogenated and unhydrogenated Si-nanocrystal/Si dioxide (Si-nc/SiO2) composites were obtained from SiyO1-y (y=0.36, 0.42) thin films deposited by plasma-enhanced chemical vapor deposition. The unhydrogenated composites were fabricated by promoting the Si precipitation through thermal annealing of the films in flowing pure Ar at temperatures up to T=1100oC. Fourier transform infrared spectroscopy (FTIR) and elastic recoil detection analysis (ERDA) did not detect any trace of H in these samples. The hydrogenated composites were obtained from identical films by replacing the Ar with (Ar+5%H2) in the annealing step. The photoluminescence (PL) of the composites was studied as a function of the annealing temperature, annealing time and pump laser power. The PL intensity in the Ar-annealed samples increases with increasing annealing temperature, and it increases and then tends to saturation as a function of the annealing time at 1100oC. For the samples annealed in (Ar+5%H2), a qualitatively similar behavior is observed, however, the PL intensity is several hundreds percent larger. The FTIR spectra show that H in these samples incorporates as Si-H bonds. The analysis of the Si-H stretching band, in conjunction with results from previous studies of the Si/SiO2 phase separation process, suggests that a fraction of these bonds are located in the Si/SiO2 interface regions. The dependence of the PL spectra on y, T, and laser power are consistent with the assumption that light emission in both hydrogenated and unhydrogenated Si-nc/SiO2 composites originates from bandgap transitions involving electron quantum confinement in the Si-ncs, the details of the recombination mechanism still being unclear. The PL spectra from the hydrogenated films are skewed to the red as compared to those from the unhydrogenated ones. The bulk of the data indicates that H passivates nonradiative recombination centers, mostly probably Si dangling bonds in the Si-nc/SiO2 regions, thus increasing the number of Si-ncs that contribute to the PL and modifying the distribution of emission wavelengths. The PL intensity in the Ar-annealed samples increases with increasing annealing temperature, and it increases and then tends to saturation as a function of the annealing time at 1100oC. For the samples annealed in (Ar+5%H2), a qualitatively similar behavior is observed, however, the PL intensity is several hundreds percent larger. The FTIR spectra show that H in these samples incorporates as Si-H bonds. The analysis of the Si-H stretching band, in conjunction with results from previous studies of the Si/SiO2 phase separation process, suggests that a fraction of these bonds are located in the Si/SiO2 interface regions. The dependence of the PL spectra on y, T, and laser power are consistent with the assumption that light emission in both hydrogenated and unhydrogenated Si-nc/SiO2 composites originates from bandgap transitions involving electron quantum confinement in the Si-ncs, the details of the recombination mechanism still being unclear. The PL spectra from the hydrogenated films are skewed to the red as compared to those from the unhydrogenated ones. The bulk of the data indicates that H passivates nonradiative recombination centers, mostly probably Si dangling bonds in the Si-nc/SiO2 regions, thus increasing the number of Si-ncs that contribute to the PL and modifying the distribution of emission wavelengths. Fil: Comedi, David Mario. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física. Laboratorio de Física del Sólido; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina Fil: Zalloum, O. H. Y.. McMaster University; Canadá Fil: Wojcik, J.. McMaster University; Canadá Fil: Mascher, P.. McMaster University; Canadá |
description |
Hydrogenated and unhydrogenated Si-nanocrystal/Si dioxide (Si-nc/SiO2) composites were obtained from SiyO1-y (y=0.36, 0.42) thin films deposited by plasma-enhanced chemical vapor deposition. The unhydrogenated composites were fabricated by promoting the Si precipitation through thermal annealing of the films in flowing pure Ar at temperatures up to T=1100oC. Fourier transform infrared spectroscopy (FTIR) and elastic recoil detection analysis (ERDA) did not detect any trace of H in these samples. The hydrogenated composites were obtained from identical films by replacing the Ar with (Ar+5%H2) in the annealing step. The photoluminescence (PL) of the composites was studied as a function of the annealing temperature, annealing time and pump laser power. The PL intensity in the Ar-annealed samples increases with increasing annealing temperature, and it increases and then tends to saturation as a function of the annealing time at 1100oC. For the samples annealed in (Ar+5%H2), a qualitatively similar behavior is observed, however, the PL intensity is several hundreds percent larger. The FTIR spectra show that H in these samples incorporates as Si-H bonds. The analysis of the Si-H stretching band, in conjunction with results from previous studies of the Si/SiO2 phase separation process, suggests that a fraction of these bonds are located in the Si/SiO2 interface regions. The dependence of the PL spectra on y, T, and laser power are consistent with the assumption that light emission in both hydrogenated and unhydrogenated Si-nc/SiO2 composites originates from bandgap transitions involving electron quantum confinement in the Si-ncs, the details of the recombination mechanism still being unclear. The PL spectra from the hydrogenated films are skewed to the red as compared to those from the unhydrogenated ones. The bulk of the data indicates that H passivates nonradiative recombination centers, mostly probably Si dangling bonds in the Si-nc/SiO2 regions, thus increasing the number of Si-ncs that contribute to the PL and modifying the distribution of emission wavelengths. The PL intensity in the Ar-annealed samples increases with increasing annealing temperature, and it increases and then tends to saturation as a function of the annealing time at 1100oC. For the samples annealed in (Ar+5%H2), a qualitatively similar behavior is observed, however, the PL intensity is several hundreds percent larger. The FTIR spectra show that H in these samples incorporates as Si-H bonds. The analysis of the Si-H stretching band, in conjunction with results from previous studies of the Si/SiO2 phase separation process, suggests that a fraction of these bonds are located in the Si/SiO2 interface regions. The dependence of the PL spectra on y, T, and laser power are consistent with the assumption that light emission in both hydrogenated and unhydrogenated Si-nc/SiO2 composites originates from bandgap transitions involving electron quantum confinement in the Si-ncs, the details of the recombination mechanism still being unclear. The PL spectra from the hydrogenated films are skewed to the red as compared to those from the unhydrogenated ones. The bulk of the data indicates that H passivates nonradiative recombination centers, mostly probably Si dangling bonds in the Si-nc/SiO2 regions, thus increasing the number of Si-ncs that contribute to the PL and modifying the distribution of emission wavelengths. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/85497 Comedi, David Mario; Zalloum, O. H. Y.; Wojcik, J.; Mascher, P.; Light emission from hydrogenated and unhydrogenated Si-nanocrystal/Si dioxide composites based on PECVD-grown Si-Rich Si oxide films; Institute of Electrical and Electronics Engineers; Ieee Journal Of Selected Topics In Quantum Electronics; 12; 6; 12-2006; 1561-1569 1077-260X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/85497 |
identifier_str_mv |
Comedi, David Mario; Zalloum, O. H. Y.; Wojcik, J.; Mascher, P.; Light emission from hydrogenated and unhydrogenated Si-nanocrystal/Si dioxide composites based on PECVD-grown Si-Rich Si oxide films; Institute of Electrical and Electronics Engineers; Ieee Journal Of Selected Topics In Quantum Electronics; 12; 6; 12-2006; 1561-1569 1077-260X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1109/JSTQE.2006.885388 info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/4032636 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613085076127744 |
score |
13.070432 |