A Cacti theoretical interpretation of the axioms of bialgebras and H-module algebras

Autores
Farinati, Marco Andrés; Lombardi, Leandro Ezequiel
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We establish a dictionary between the Cacti algebra axioms on a Cacti algebra structure with underlying free associative algebra, under suitable good behavior with degrees. Using these ideas, for an associative algebra A and a bialgebra H, we also translate Cacti algebra maps Ω(H) → C•(A) (where Ω(H) stands for the cobar construction on H and C•(A) is the Hochschild cohomology complex) with H-module algebra structures on A, and illustrate with examples of applications.
Fil: Farinati, Marco Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Fil: Lombardi, Leandro Ezequiel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Cacti Operad
Bialgebars And Module Algebras
Gerstenhaber Alegbras
Hochschild Cohomology
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18863

id CONICETDig_8aaa2be806a9f60feb9e67c0bf12b2c9
oai_identifier_str oai:ri.conicet.gov.ar:11336/18863
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A Cacti theoretical interpretation of the axioms of bialgebras and H-module algebrasFarinati, Marco AndrésLombardi, Leandro EzequielCacti OperadBialgebars And Module AlgebrasGerstenhaber AlegbrasHochschild Cohomologyhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We establish a dictionary between the Cacti algebra axioms on a Cacti algebra structure with underlying free associative algebra, under suitable good behavior with degrees. Using these ideas, for an associative algebra A and a bialgebra H, we also translate Cacti algebra maps Ω(H) → C•(A) (where Ω(H) stands for the cobar construction on H and C•(A) is the Hochschild cohomology complex) with H-module algebra structures on A, and illustrate with examples of applications.Fil: Farinati, Marco Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaFil: Lombardi, Leandro Ezequiel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Inc2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18863Farinati, Marco Andrés; Lombardi, Leandro Ezequiel; A Cacti theoretical interpretation of the axioms of bialgebras and H-module algebras; Elsevier Inc; Journal Of Algebra; 427; 4-2015; 295-3160021-8693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2014.12.015info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0021869314007121info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1404.5225info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:45:34Zoai:ri.conicet.gov.ar:11336/18863instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:45:34.766CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A Cacti theoretical interpretation of the axioms of bialgebras and H-module algebras
title A Cacti theoretical interpretation of the axioms of bialgebras and H-module algebras
spellingShingle A Cacti theoretical interpretation of the axioms of bialgebras and H-module algebras
Farinati, Marco Andrés
Cacti Operad
Bialgebars And Module Algebras
Gerstenhaber Alegbras
Hochschild Cohomology
title_short A Cacti theoretical interpretation of the axioms of bialgebras and H-module algebras
title_full A Cacti theoretical interpretation of the axioms of bialgebras and H-module algebras
title_fullStr A Cacti theoretical interpretation of the axioms of bialgebras and H-module algebras
title_full_unstemmed A Cacti theoretical interpretation of the axioms of bialgebras and H-module algebras
title_sort A Cacti theoretical interpretation of the axioms of bialgebras and H-module algebras
dc.creator.none.fl_str_mv Farinati, Marco Andrés
Lombardi, Leandro Ezequiel
author Farinati, Marco Andrés
author_facet Farinati, Marco Andrés
Lombardi, Leandro Ezequiel
author_role author
author2 Lombardi, Leandro Ezequiel
author2_role author
dc.subject.none.fl_str_mv Cacti Operad
Bialgebars And Module Algebras
Gerstenhaber Alegbras
Hochschild Cohomology
topic Cacti Operad
Bialgebars And Module Algebras
Gerstenhaber Alegbras
Hochschild Cohomology
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We establish a dictionary between the Cacti algebra axioms on a Cacti algebra structure with underlying free associative algebra, under suitable good behavior with degrees. Using these ideas, for an associative algebra A and a bialgebra H, we also translate Cacti algebra maps Ω(H) → C•(A) (where Ω(H) stands for the cobar construction on H and C•(A) is the Hochschild cohomology complex) with H-module algebra structures on A, and illustrate with examples of applications.
Fil: Farinati, Marco Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Fil: Lombardi, Leandro Ezequiel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We establish a dictionary between the Cacti algebra axioms on a Cacti algebra structure with underlying free associative algebra, under suitable good behavior with degrees. Using these ideas, for an associative algebra A and a bialgebra H, we also translate Cacti algebra maps Ω(H) → C•(A) (where Ω(H) stands for the cobar construction on H and C•(A) is the Hochschild cohomology complex) with H-module algebra structures on A, and illustrate with examples of applications.
publishDate 2015
dc.date.none.fl_str_mv 2015-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18863
Farinati, Marco Andrés; Lombardi, Leandro Ezequiel; A Cacti theoretical interpretation of the axioms of bialgebras and H-module algebras; Elsevier Inc; Journal Of Algebra; 427; 4-2015; 295-316
0021-8693
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18863
identifier_str_mv Farinati, Marco Andrés; Lombardi, Leandro Ezequiel; A Cacti theoretical interpretation of the axioms of bialgebras and H-module algebras; Elsevier Inc; Journal Of Algebra; 427; 4-2015; 295-316
0021-8693
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2014.12.015
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0021869314007121
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1404.5225
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Inc
publisher.none.fl_str_mv Elsevier Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613427727695872
score 13.070432