A Cacti theoretical interpretation of the axioms of bialgebras and H-module algebras
- Autores
- Farinati, Marco Andrés; Lombardi, Leandro Ezequiel
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We establish a dictionary between the Cacti algebra axioms on a Cacti algebra structure with underlying free associative algebra, under suitable good behavior with degrees. Using these ideas, for an associative algebra A and a bialgebra H, we also translate Cacti algebra maps Ω(H) → C•(A) (where Ω(H) stands for the cobar construction on H and C•(A) is the Hochschild cohomology complex) with H-module algebra structures on A, and illustrate with examples of applications.
Fil: Farinati, Marco Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Fil: Lombardi, Leandro Ezequiel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Cacti Operad
Bialgebars And Module Algebras
Gerstenhaber Alegbras
Hochschild Cohomology - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18863
Ver los metadatos del registro completo
id |
CONICETDig_8aaa2be806a9f60feb9e67c0bf12b2c9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18863 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Cacti theoretical interpretation of the axioms of bialgebras and H-module algebrasFarinati, Marco AndrésLombardi, Leandro EzequielCacti OperadBialgebars And Module AlgebrasGerstenhaber AlegbrasHochschild Cohomologyhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We establish a dictionary between the Cacti algebra axioms on a Cacti algebra structure with underlying free associative algebra, under suitable good behavior with degrees. Using these ideas, for an associative algebra A and a bialgebra H, we also translate Cacti algebra maps Ω(H) → C•(A) (where Ω(H) stands for the cobar construction on H and C•(A) is the Hochschild cohomology complex) with H-module algebra structures on A, and illustrate with examples of applications.Fil: Farinati, Marco Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaFil: Lombardi, Leandro Ezequiel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Inc2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18863Farinati, Marco Andrés; Lombardi, Leandro Ezequiel; A Cacti theoretical interpretation of the axioms of bialgebras and H-module algebras; Elsevier Inc; Journal Of Algebra; 427; 4-2015; 295-3160021-8693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2014.12.015info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0021869314007121info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1404.5225info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:45:34Zoai:ri.conicet.gov.ar:11336/18863instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:45:34.766CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Cacti theoretical interpretation of the axioms of bialgebras and H-module algebras |
title |
A Cacti theoretical interpretation of the axioms of bialgebras and H-module algebras |
spellingShingle |
A Cacti theoretical interpretation of the axioms of bialgebras and H-module algebras Farinati, Marco Andrés Cacti Operad Bialgebars And Module Algebras Gerstenhaber Alegbras Hochschild Cohomology |
title_short |
A Cacti theoretical interpretation of the axioms of bialgebras and H-module algebras |
title_full |
A Cacti theoretical interpretation of the axioms of bialgebras and H-module algebras |
title_fullStr |
A Cacti theoretical interpretation of the axioms of bialgebras and H-module algebras |
title_full_unstemmed |
A Cacti theoretical interpretation of the axioms of bialgebras and H-module algebras |
title_sort |
A Cacti theoretical interpretation of the axioms of bialgebras and H-module algebras |
dc.creator.none.fl_str_mv |
Farinati, Marco Andrés Lombardi, Leandro Ezequiel |
author |
Farinati, Marco Andrés |
author_facet |
Farinati, Marco Andrés Lombardi, Leandro Ezequiel |
author_role |
author |
author2 |
Lombardi, Leandro Ezequiel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Cacti Operad Bialgebars And Module Algebras Gerstenhaber Alegbras Hochschild Cohomology |
topic |
Cacti Operad Bialgebars And Module Algebras Gerstenhaber Alegbras Hochschild Cohomology |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We establish a dictionary between the Cacti algebra axioms on a Cacti algebra structure with underlying free associative algebra, under suitable good behavior with degrees. Using these ideas, for an associative algebra A and a bialgebra H, we also translate Cacti algebra maps Ω(H) → C•(A) (where Ω(H) stands for the cobar construction on H and C•(A) is the Hochschild cohomology complex) with H-module algebra structures on A, and illustrate with examples of applications. Fil: Farinati, Marco Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina Fil: Lombardi, Leandro Ezequiel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We establish a dictionary between the Cacti algebra axioms on a Cacti algebra structure with underlying free associative algebra, under suitable good behavior with degrees. Using these ideas, for an associative algebra A and a bialgebra H, we also translate Cacti algebra maps Ω(H) → C•(A) (where Ω(H) stands for the cobar construction on H and C•(A) is the Hochschild cohomology complex) with H-module algebra structures on A, and illustrate with examples of applications. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18863 Farinati, Marco Andrés; Lombardi, Leandro Ezequiel; A Cacti theoretical interpretation of the axioms of bialgebras and H-module algebras; Elsevier Inc; Journal Of Algebra; 427; 4-2015; 295-316 0021-8693 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18863 |
identifier_str_mv |
Farinati, Marco Andrés; Lombardi, Leandro Ezequiel; A Cacti theoretical interpretation of the axioms of bialgebras and H-module algebras; Elsevier Inc; Journal Of Algebra; 427; 4-2015; 295-316 0021-8693 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2014.12.015 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0021869314007121 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1404.5225 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Inc |
publisher.none.fl_str_mv |
Elsevier Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613427727695872 |
score |
13.070432 |