Lie structure on the Hochschild cohomology of a family of subalgebras of the Weyl algebra

Autores
Lopes, Samuel; Solotar, Andrea Leonor
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
For each nonzero h ∈ F[x], where F is a field, let Ah be the unital associative algebra generated by elements x; y, satisfying the relation yx - xy = h. This gives a parametric family of subalgebras of the Weyl algebra A1, containing many well-known algebras which have previously been studied independently. In this paper, we give a full description of the Hochschild cohomology HH·(Ah) over a field of an arbitrary characteristic. In case F has a positive characteristic, the center Z(Ah) of Ah is nontrivial and we describe HH·(Ah) as a module over Z.(Ah). The most interesting results occur when F has a characteristic 0. In this case, we describe HH·(Ah) as a module over the Lie algebra HH1(Ah) and find that this action is closely related to the intermediate series modules over the Virasoro algebra. We also determine when HH·(Ah) is a semisimple HH1.Ah/-module.
Fil: Lopes, Samuel. Universidad de Porto; Portugal
Fil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
GERSTENHABER BRACKET
HOCHSCHILD COHOMOLOGY
ORE EXTENSION
WEYL ALGEBRA
WITT ALGEBRA
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/166833

id CONICETDig_b23eb0fe8dedbdc29e6cda7157f3f08e
oai_identifier_str oai:ri.conicet.gov.ar:11336/166833
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Lie structure on the Hochschild cohomology of a family of subalgebras of the Weyl algebraLopes, SamuelSolotar, Andrea LeonorGERSTENHABER BRACKETHOCHSCHILD COHOMOLOGYORE EXTENSIONWEYL ALGEBRAWITT ALGEBRAhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For each nonzero h ∈ F[x], where F is a field, let Ah be the unital associative algebra generated by elements x; y, satisfying the relation yx - xy = h. This gives a parametric family of subalgebras of the Weyl algebra A1, containing many well-known algebras which have previously been studied independently. In this paper, we give a full description of the Hochschild cohomology HH·(Ah) over a field of an arbitrary characteristic. In case F has a positive characteristic, the center Z(Ah) of Ah is nontrivial and we describe HH·(Ah) as a module over Z.(Ah). The most interesting results occur when F has a characteristic 0. In this case, we describe HH·(Ah) as a module over the Lie algebra HH1(Ah) and find that this action is closely related to the intermediate series modules over the Virasoro algebra. We also determine when HH·(Ah) is a semisimple HH1.Ah/-module.Fil: Lopes, Samuel. Universidad de Porto; PortugalFil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaEuropean Mathematical Society2021-12-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/166833Lopes, Samuel; Solotar, Andrea Leonor; Lie structure on the Hochschild cohomology of a family of subalgebras of the Weyl algebra; European Mathematical Society; Journal of Noncommutative Geometry; 15; 4; 7-12-2021; 1373-14071661-69521661-6960CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4171/jncg/439info:eu-repo/semantics/altIdentifier/url/https://ems.press/journals/jncg/articles/3731350info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:53Zoai:ri.conicet.gov.ar:11336/166833instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:53.339CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Lie structure on the Hochschild cohomology of a family of subalgebras of the Weyl algebra
title Lie structure on the Hochschild cohomology of a family of subalgebras of the Weyl algebra
spellingShingle Lie structure on the Hochschild cohomology of a family of subalgebras of the Weyl algebra
Lopes, Samuel
GERSTENHABER BRACKET
HOCHSCHILD COHOMOLOGY
ORE EXTENSION
WEYL ALGEBRA
WITT ALGEBRA
title_short Lie structure on the Hochschild cohomology of a family of subalgebras of the Weyl algebra
title_full Lie structure on the Hochschild cohomology of a family of subalgebras of the Weyl algebra
title_fullStr Lie structure on the Hochschild cohomology of a family of subalgebras of the Weyl algebra
title_full_unstemmed Lie structure on the Hochschild cohomology of a family of subalgebras of the Weyl algebra
title_sort Lie structure on the Hochschild cohomology of a family of subalgebras of the Weyl algebra
dc.creator.none.fl_str_mv Lopes, Samuel
Solotar, Andrea Leonor
author Lopes, Samuel
author_facet Lopes, Samuel
Solotar, Andrea Leonor
author_role author
author2 Solotar, Andrea Leonor
author2_role author
dc.subject.none.fl_str_mv GERSTENHABER BRACKET
HOCHSCHILD COHOMOLOGY
ORE EXTENSION
WEYL ALGEBRA
WITT ALGEBRA
topic GERSTENHABER BRACKET
HOCHSCHILD COHOMOLOGY
ORE EXTENSION
WEYL ALGEBRA
WITT ALGEBRA
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv For each nonzero h ∈ F[x], where F is a field, let Ah be the unital associative algebra generated by elements x; y, satisfying the relation yx - xy = h. This gives a parametric family of subalgebras of the Weyl algebra A1, containing many well-known algebras which have previously been studied independently. In this paper, we give a full description of the Hochschild cohomology HH·(Ah) over a field of an arbitrary characteristic. In case F has a positive characteristic, the center Z(Ah) of Ah is nontrivial and we describe HH·(Ah) as a module over Z.(Ah). The most interesting results occur when F has a characteristic 0. In this case, we describe HH·(Ah) as a module over the Lie algebra HH1(Ah) and find that this action is closely related to the intermediate series modules over the Virasoro algebra. We also determine when HH·(Ah) is a semisimple HH1.Ah/-module.
Fil: Lopes, Samuel. Universidad de Porto; Portugal
Fil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description For each nonzero h ∈ F[x], where F is a field, let Ah be the unital associative algebra generated by elements x; y, satisfying the relation yx - xy = h. This gives a parametric family of subalgebras of the Weyl algebra A1, containing many well-known algebras which have previously been studied independently. In this paper, we give a full description of the Hochschild cohomology HH·(Ah) over a field of an arbitrary characteristic. In case F has a positive characteristic, the center Z(Ah) of Ah is nontrivial and we describe HH·(Ah) as a module over Z.(Ah). The most interesting results occur when F has a characteristic 0. In this case, we describe HH·(Ah) as a module over the Lie algebra HH1(Ah) and find that this action is closely related to the intermediate series modules over the Virasoro algebra. We also determine when HH·(Ah) is a semisimple HH1.Ah/-module.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/166833
Lopes, Samuel; Solotar, Andrea Leonor; Lie structure on the Hochschild cohomology of a family of subalgebras of the Weyl algebra; European Mathematical Society; Journal of Noncommutative Geometry; 15; 4; 7-12-2021; 1373-1407
1661-6952
1661-6960
CONICET Digital
CONICET
url http://hdl.handle.net/11336/166833
identifier_str_mv Lopes, Samuel; Solotar, Andrea Leonor; Lie structure on the Hochschild cohomology of a family of subalgebras of the Weyl algebra; European Mathematical Society; Journal of Noncommutative Geometry; 15; 4; 7-12-2021; 1373-1407
1661-6952
1661-6960
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.4171/jncg/439
info:eu-repo/semantics/altIdentifier/url/https://ems.press/journals/jncg/articles/3731350
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv European Mathematical Society
publisher.none.fl_str_mv European Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268695430168576
score 13.13397