Lie structure on the Hochschild cohomology of a family of subalgebras of the Weyl algebra
- Autores
- Lopes, Samuel; Solotar, Andrea Leonor
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- For each nonzero h ∈ F[x], where F is a field, let Ah be the unital associative algebra generated by elements x; y, satisfying the relation yx - xy = h. This gives a parametric family of subalgebras of the Weyl algebra A1, containing many well-known algebras which have previously been studied independently. In this paper, we give a full description of the Hochschild cohomology HH·(Ah) over a field of an arbitrary characteristic. In case F has a positive characteristic, the center Z(Ah) of Ah is nontrivial and we describe HH·(Ah) as a module over Z.(Ah). The most interesting results occur when F has a characteristic 0. In this case, we describe HH·(Ah) as a module over the Lie algebra HH1(Ah) and find that this action is closely related to the intermediate series modules over the Virasoro algebra. We also determine when HH·(Ah) is a semisimple HH1.Ah/-module.
Fil: Lopes, Samuel. Universidad de Porto; Portugal
Fil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
GERSTENHABER BRACKET
HOCHSCHILD COHOMOLOGY
ORE EXTENSION
WEYL ALGEBRA
WITT ALGEBRA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/166833
Ver los metadatos del registro completo
id |
CONICETDig_b23eb0fe8dedbdc29e6cda7157f3f08e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/166833 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Lie structure on the Hochschild cohomology of a family of subalgebras of the Weyl algebraLopes, SamuelSolotar, Andrea LeonorGERSTENHABER BRACKETHOCHSCHILD COHOMOLOGYORE EXTENSIONWEYL ALGEBRAWITT ALGEBRAhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For each nonzero h ∈ F[x], where F is a field, let Ah be the unital associative algebra generated by elements x; y, satisfying the relation yx - xy = h. This gives a parametric family of subalgebras of the Weyl algebra A1, containing many well-known algebras which have previously been studied independently. In this paper, we give a full description of the Hochschild cohomology HH·(Ah) over a field of an arbitrary characteristic. In case F has a positive characteristic, the center Z(Ah) of Ah is nontrivial and we describe HH·(Ah) as a module over Z.(Ah). The most interesting results occur when F has a characteristic 0. In this case, we describe HH·(Ah) as a module over the Lie algebra HH1(Ah) and find that this action is closely related to the intermediate series modules over the Virasoro algebra. We also determine when HH·(Ah) is a semisimple HH1.Ah/-module.Fil: Lopes, Samuel. Universidad de Porto; PortugalFil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaEuropean Mathematical Society2021-12-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/166833Lopes, Samuel; Solotar, Andrea Leonor; Lie structure on the Hochschild cohomology of a family of subalgebras of the Weyl algebra; European Mathematical Society; Journal of Noncommutative Geometry; 15; 4; 7-12-2021; 1373-14071661-69521661-6960CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4171/jncg/439info:eu-repo/semantics/altIdentifier/url/https://ems.press/journals/jncg/articles/3731350info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:53Zoai:ri.conicet.gov.ar:11336/166833instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:53.339CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Lie structure on the Hochschild cohomology of a family of subalgebras of the Weyl algebra |
title |
Lie structure on the Hochschild cohomology of a family of subalgebras of the Weyl algebra |
spellingShingle |
Lie structure on the Hochschild cohomology of a family of subalgebras of the Weyl algebra Lopes, Samuel GERSTENHABER BRACKET HOCHSCHILD COHOMOLOGY ORE EXTENSION WEYL ALGEBRA WITT ALGEBRA |
title_short |
Lie structure on the Hochschild cohomology of a family of subalgebras of the Weyl algebra |
title_full |
Lie structure on the Hochschild cohomology of a family of subalgebras of the Weyl algebra |
title_fullStr |
Lie structure on the Hochschild cohomology of a family of subalgebras of the Weyl algebra |
title_full_unstemmed |
Lie structure on the Hochschild cohomology of a family of subalgebras of the Weyl algebra |
title_sort |
Lie structure on the Hochschild cohomology of a family of subalgebras of the Weyl algebra |
dc.creator.none.fl_str_mv |
Lopes, Samuel Solotar, Andrea Leonor |
author |
Lopes, Samuel |
author_facet |
Lopes, Samuel Solotar, Andrea Leonor |
author_role |
author |
author2 |
Solotar, Andrea Leonor |
author2_role |
author |
dc.subject.none.fl_str_mv |
GERSTENHABER BRACKET HOCHSCHILD COHOMOLOGY ORE EXTENSION WEYL ALGEBRA WITT ALGEBRA |
topic |
GERSTENHABER BRACKET HOCHSCHILD COHOMOLOGY ORE EXTENSION WEYL ALGEBRA WITT ALGEBRA |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
For each nonzero h ∈ F[x], where F is a field, let Ah be the unital associative algebra generated by elements x; y, satisfying the relation yx - xy = h. This gives a parametric family of subalgebras of the Weyl algebra A1, containing many well-known algebras which have previously been studied independently. In this paper, we give a full description of the Hochschild cohomology HH·(Ah) over a field of an arbitrary characteristic. In case F has a positive characteristic, the center Z(Ah) of Ah is nontrivial and we describe HH·(Ah) as a module over Z.(Ah). The most interesting results occur when F has a characteristic 0. In this case, we describe HH·(Ah) as a module over the Lie algebra HH1(Ah) and find that this action is closely related to the intermediate series modules over the Virasoro algebra. We also determine when HH·(Ah) is a semisimple HH1.Ah/-module. Fil: Lopes, Samuel. Universidad de Porto; Portugal Fil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
For each nonzero h ∈ F[x], where F is a field, let Ah be the unital associative algebra generated by elements x; y, satisfying the relation yx - xy = h. This gives a parametric family of subalgebras of the Weyl algebra A1, containing many well-known algebras which have previously been studied independently. In this paper, we give a full description of the Hochschild cohomology HH·(Ah) over a field of an arbitrary characteristic. In case F has a positive characteristic, the center Z(Ah) of Ah is nontrivial and we describe HH·(Ah) as a module over Z.(Ah). The most interesting results occur when F has a characteristic 0. In this case, we describe HH·(Ah) as a module over the Lie algebra HH1(Ah) and find that this action is closely related to the intermediate series modules over the Virasoro algebra. We also determine when HH·(Ah) is a semisimple HH1.Ah/-module. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/166833 Lopes, Samuel; Solotar, Andrea Leonor; Lie structure on the Hochschild cohomology of a family of subalgebras of the Weyl algebra; European Mathematical Society; Journal of Noncommutative Geometry; 15; 4; 7-12-2021; 1373-1407 1661-6952 1661-6960 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/166833 |
identifier_str_mv |
Lopes, Samuel; Solotar, Andrea Leonor; Lie structure on the Hochschild cohomology of a family of subalgebras of the Weyl algebra; European Mathematical Society; Journal of Noncommutative Geometry; 15; 4; 7-12-2021; 1373-1407 1661-6952 1661-6960 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.4171/jncg/439 info:eu-repo/semantics/altIdentifier/url/https://ems.press/journals/jncg/articles/3731350 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
European Mathematical Society |
publisher.none.fl_str_mv |
European Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268695430168576 |
score |
13.13397 |