G-structure on the cohomology of Hopf algebras
- Autores
- Farinati, M.A.; Solotar, A.L.
- Año de publicación
- 2004
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove that Ext•A(k, k) is a Gerstenhaber algebra, where A is a Hopf algebra. In case A = D(H) is the Drinfeld double of a finite-dimensional Hopf algebra H, our results imply the existence of a Gerstenhaber bracket on H•GS (H, H). This fact was conjectured by R. Taillefer. The method consists of identifying H •GS (H, H) ≅ Ext•A (k, k) as a Gerstenhaber subalgebra of H• (A, A) (the Hochschild cohomology of A).
Fil:Farinati, M.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Solotar, A.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Proc. Am. Math. Soc. 2004;132(10):2859-2865
- Materia
-
Gerstenhaber algebras
Hochschild cohomology
Hopf algebras - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00029939_v132_n10_p2859_Farinati
Ver los metadatos del registro completo
id |
BDUBAFCEN_a4f4076d47f7b86c57ae8d8cd5c1d82b |
---|---|
oai_identifier_str |
paperaa:paper_00029939_v132_n10_p2859_Farinati |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
G-structure on the cohomology of Hopf algebrasFarinati, M.A.Solotar, A.L.Gerstenhaber algebrasHochschild cohomologyHopf algebrasWe prove that Ext•A(k, k) is a Gerstenhaber algebra, where A is a Hopf algebra. In case A = D(H) is the Drinfeld double of a finite-dimensional Hopf algebra H, our results imply the existence of a Gerstenhaber bracket on H•GS (H, H). This fact was conjectured by R. Taillefer. The method consists of identifying H •GS (H, H) ≅ Ext•A (k, k) as a Gerstenhaber subalgebra of H• (A, A) (the Hochschild cohomology of A).Fil:Farinati, M.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Solotar, A.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2004info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00029939_v132_n10_p2859_FarinatiProc. Am. Math. Soc. 2004;132(10):2859-2865reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:23Zpaperaa:paper_00029939_v132_n10_p2859_FarinatiInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:25.451Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
G-structure on the cohomology of Hopf algebras |
title |
G-structure on the cohomology of Hopf algebras |
spellingShingle |
G-structure on the cohomology of Hopf algebras Farinati, M.A. Gerstenhaber algebras Hochschild cohomology Hopf algebras |
title_short |
G-structure on the cohomology of Hopf algebras |
title_full |
G-structure on the cohomology of Hopf algebras |
title_fullStr |
G-structure on the cohomology of Hopf algebras |
title_full_unstemmed |
G-structure on the cohomology of Hopf algebras |
title_sort |
G-structure on the cohomology of Hopf algebras |
dc.creator.none.fl_str_mv |
Farinati, M.A. Solotar, A.L. |
author |
Farinati, M.A. |
author_facet |
Farinati, M.A. Solotar, A.L. |
author_role |
author |
author2 |
Solotar, A.L. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Gerstenhaber algebras Hochschild cohomology Hopf algebras |
topic |
Gerstenhaber algebras Hochschild cohomology Hopf algebras |
dc.description.none.fl_txt_mv |
We prove that Ext•A(k, k) is a Gerstenhaber algebra, where A is a Hopf algebra. In case A = D(H) is the Drinfeld double of a finite-dimensional Hopf algebra H, our results imply the existence of a Gerstenhaber bracket on H•GS (H, H). This fact was conjectured by R. Taillefer. The method consists of identifying H •GS (H, H) ≅ Ext•A (k, k) as a Gerstenhaber subalgebra of H• (A, A) (the Hochschild cohomology of A). Fil:Farinati, M.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Solotar, A.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
We prove that Ext•A(k, k) is a Gerstenhaber algebra, where A is a Hopf algebra. In case A = D(H) is the Drinfeld double of a finite-dimensional Hopf algebra H, our results imply the existence of a Gerstenhaber bracket on H•GS (H, H). This fact was conjectured by R. Taillefer. The method consists of identifying H •GS (H, H) ≅ Ext•A (k, k) as a Gerstenhaber subalgebra of H• (A, A) (the Hochschild cohomology of A). |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00029939_v132_n10_p2859_Farinati |
url |
http://hdl.handle.net/20.500.12110/paper_00029939_v132_n10_p2859_Farinati |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Proc. Am. Math. Soc. 2004;132(10):2859-2865 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1842340701896966144 |
score |
12.623145 |