G-structure on the cohomology of Hopf algebras

Autores
Farinati, M.A.; Solotar, A.L.
Año de publicación
2004
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We prove that Ext•A(k, k) is a Gerstenhaber algebra, where A is a Hopf algebra. In case A = D(H) is the Drinfeld double of a finite-dimensional Hopf algebra H, our results imply the existence of a Gerstenhaber bracket on H•GS (H, H). This fact was conjectured by R. Taillefer. The method consists of identifying H •GS (H, H) ≅ Ext•A (k, k) as a Gerstenhaber subalgebra of H• (A, A) (the Hochschild cohomology of A).
Fil:Farinati, M.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Solotar, A.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Proc. Am. Math. Soc. 2004;132(10):2859-2865
Materia
Gerstenhaber algebras
Hochschild cohomology
Hopf algebras
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00029939_v132_n10_p2859_Farinati

id BDUBAFCEN_a4f4076d47f7b86c57ae8d8cd5c1d82b
oai_identifier_str paperaa:paper_00029939_v132_n10_p2859_Farinati
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling G-structure on the cohomology of Hopf algebrasFarinati, M.A.Solotar, A.L.Gerstenhaber algebrasHochschild cohomologyHopf algebrasWe prove that Ext•A(k, k) is a Gerstenhaber algebra, where A is a Hopf algebra. In case A = D(H) is the Drinfeld double of a finite-dimensional Hopf algebra H, our results imply the existence of a Gerstenhaber bracket on H•GS (H, H). This fact was conjectured by R. Taillefer. The method consists of identifying H •GS (H, H) ≅ Ext•A (k, k) as a Gerstenhaber subalgebra of H• (A, A) (the Hochschild cohomology of A).Fil:Farinati, M.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Solotar, A.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2004info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00029939_v132_n10_p2859_FarinatiProc. Am. Math. Soc. 2004;132(10):2859-2865reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:23Zpaperaa:paper_00029939_v132_n10_p2859_FarinatiInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:25.451Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv G-structure on the cohomology of Hopf algebras
title G-structure on the cohomology of Hopf algebras
spellingShingle G-structure on the cohomology of Hopf algebras
Farinati, M.A.
Gerstenhaber algebras
Hochschild cohomology
Hopf algebras
title_short G-structure on the cohomology of Hopf algebras
title_full G-structure on the cohomology of Hopf algebras
title_fullStr G-structure on the cohomology of Hopf algebras
title_full_unstemmed G-structure on the cohomology of Hopf algebras
title_sort G-structure on the cohomology of Hopf algebras
dc.creator.none.fl_str_mv Farinati, M.A.
Solotar, A.L.
author Farinati, M.A.
author_facet Farinati, M.A.
Solotar, A.L.
author_role author
author2 Solotar, A.L.
author2_role author
dc.subject.none.fl_str_mv Gerstenhaber algebras
Hochschild cohomology
Hopf algebras
topic Gerstenhaber algebras
Hochschild cohomology
Hopf algebras
dc.description.none.fl_txt_mv We prove that Ext•A(k, k) is a Gerstenhaber algebra, where A is a Hopf algebra. In case A = D(H) is the Drinfeld double of a finite-dimensional Hopf algebra H, our results imply the existence of a Gerstenhaber bracket on H•GS (H, H). This fact was conjectured by R. Taillefer. The method consists of identifying H •GS (H, H) ≅ Ext•A (k, k) as a Gerstenhaber subalgebra of H• (A, A) (the Hochschild cohomology of A).
Fil:Farinati, M.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Solotar, A.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We prove that Ext•A(k, k) is a Gerstenhaber algebra, where A is a Hopf algebra. In case A = D(H) is the Drinfeld double of a finite-dimensional Hopf algebra H, our results imply the existence of a Gerstenhaber bracket on H•GS (H, H). This fact was conjectured by R. Taillefer. The method consists of identifying H •GS (H, H) ≅ Ext•A (k, k) as a Gerstenhaber subalgebra of H• (A, A) (the Hochschild cohomology of A).
publishDate 2004
dc.date.none.fl_str_mv 2004
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00029939_v132_n10_p2859_Farinati
url http://hdl.handle.net/20.500.12110/paper_00029939_v132_n10_p2859_Farinati
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Proc. Am. Math. Soc. 2004;132(10):2859-2865
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1842340701896966144
score 12.623145