On elliptic curves of prime power conductor over imaginary quadratic fields with class number 1
- Autores
- Cremona, John; Pacetti, Ariel Martín
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The main result of this paper is to extend from Q to each of the nine imaginary quadratic fields of class number 1 a result of [Serre, Duke Math. J. 54 (1987) 179–230] and [Mestre–Oesterlé, J. reine. angew. Math 400 (1989) 173–184], namely that if E is an elliptic curve of prime conductor, then either E or a 2-, 3- or 5-isogenous curve has prime discriminant. For four of the nine fields, the theorem holds with no change, while for the remaining five fields the discriminant of a curve with prime conductor is (up to isogeny) either prime or the square of a prime. The proof is conditional in two ways: first that the curves are modular, so are associated to suitable Bianchi newforms; and second that a certain level-lowering conjecture holds for Bianchi newforms. We also classify all elliptic curves of prime power conductor and non-trivial torsion over each of the nine fields: in the case of 2-torsion, we find that such curves either have CM or with a small finite number of exceptions arise from a family analogous to the Setzer–Neumann family over Q.
Fil: Cremona, John. University of Warwick; Reino Unido
Fil: Pacetti, Ariel Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
11G05 (PRIMARY)
14H52 (SECONDARY) - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/119668
Ver los metadatos del registro completo
id |
CONICETDig_7767a60eb9c577f901b791eb887d0bd4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/119668 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On elliptic curves of prime power conductor over imaginary quadratic fields with class number 1Cremona, JohnPacetti, Ariel Martín11G05 (PRIMARY)14H52 (SECONDARY)https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The main result of this paper is to extend from Q to each of the nine imaginary quadratic fields of class number 1 a result of [Serre, Duke Math. J. 54 (1987) 179–230] and [Mestre–Oesterlé, J. reine. angew. Math 400 (1989) 173–184], namely that if E is an elliptic curve of prime conductor, then either E or a 2-, 3- or 5-isogenous curve has prime discriminant. For four of the nine fields, the theorem holds with no change, while for the remaining five fields the discriminant of a curve with prime conductor is (up to isogeny) either prime or the square of a prime. The proof is conditional in two ways: first that the curves are modular, so are associated to suitable Bianchi newforms; and second that a certain level-lowering conjecture holds for Bianchi newforms. We also classify all elliptic curves of prime power conductor and non-trivial torsion over each of the nine fields: in the case of 2-torsion, we find that such curves either have CM or with a small finite number of exceptions arise from a family analogous to the Setzer–Neumann family over Q.Fil: Cremona, John. University of Warwick; Reino UnidoFil: Pacetti, Ariel Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaLondon Mathematical Society2019-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/119668Cremona, John; Pacetti, Ariel Martín; On elliptic curves of prime power conductor over imaginary quadratic fields with class number 1; London Mathematical Society; Proceedings of the London Mathematical Society; 118; 5; 5-2019; 1245-12760024-61151460-244XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1112/plms.12214info:eu-repo/semantics/altIdentifier/url/https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms.12214info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:52:16Zoai:ri.conicet.gov.ar:11336/119668instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:52:16.598CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On elliptic curves of prime power conductor over imaginary quadratic fields with class number 1 |
title |
On elliptic curves of prime power conductor over imaginary quadratic fields with class number 1 |
spellingShingle |
On elliptic curves of prime power conductor over imaginary quadratic fields with class number 1 Cremona, John 11G05 (PRIMARY) 14H52 (SECONDARY) |
title_short |
On elliptic curves of prime power conductor over imaginary quadratic fields with class number 1 |
title_full |
On elliptic curves of prime power conductor over imaginary quadratic fields with class number 1 |
title_fullStr |
On elliptic curves of prime power conductor over imaginary quadratic fields with class number 1 |
title_full_unstemmed |
On elliptic curves of prime power conductor over imaginary quadratic fields with class number 1 |
title_sort |
On elliptic curves of prime power conductor over imaginary quadratic fields with class number 1 |
dc.creator.none.fl_str_mv |
Cremona, John Pacetti, Ariel Martín |
author |
Cremona, John |
author_facet |
Cremona, John Pacetti, Ariel Martín |
author_role |
author |
author2 |
Pacetti, Ariel Martín |
author2_role |
author |
dc.subject.none.fl_str_mv |
11G05 (PRIMARY) 14H52 (SECONDARY) |
topic |
11G05 (PRIMARY) 14H52 (SECONDARY) |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The main result of this paper is to extend from Q to each of the nine imaginary quadratic fields of class number 1 a result of [Serre, Duke Math. J. 54 (1987) 179–230] and [Mestre–Oesterlé, J. reine. angew. Math 400 (1989) 173–184], namely that if E is an elliptic curve of prime conductor, then either E or a 2-, 3- or 5-isogenous curve has prime discriminant. For four of the nine fields, the theorem holds with no change, while for the remaining five fields the discriminant of a curve with prime conductor is (up to isogeny) either prime or the square of a prime. The proof is conditional in two ways: first that the curves are modular, so are associated to suitable Bianchi newforms; and second that a certain level-lowering conjecture holds for Bianchi newforms. We also classify all elliptic curves of prime power conductor and non-trivial torsion over each of the nine fields: in the case of 2-torsion, we find that such curves either have CM or with a small finite number of exceptions arise from a family analogous to the Setzer–Neumann family over Q. Fil: Cremona, John. University of Warwick; Reino Unido Fil: Pacetti, Ariel Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
The main result of this paper is to extend from Q to each of the nine imaginary quadratic fields of class number 1 a result of [Serre, Duke Math. J. 54 (1987) 179–230] and [Mestre–Oesterlé, J. reine. angew. Math 400 (1989) 173–184], namely that if E is an elliptic curve of prime conductor, then either E or a 2-, 3- or 5-isogenous curve has prime discriminant. For four of the nine fields, the theorem holds with no change, while for the remaining five fields the discriminant of a curve with prime conductor is (up to isogeny) either prime or the square of a prime. The proof is conditional in two ways: first that the curves are modular, so are associated to suitable Bianchi newforms; and second that a certain level-lowering conjecture holds for Bianchi newforms. We also classify all elliptic curves of prime power conductor and non-trivial torsion over each of the nine fields: in the case of 2-torsion, we find that such curves either have CM or with a small finite number of exceptions arise from a family analogous to the Setzer–Neumann family over Q. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/119668 Cremona, John; Pacetti, Ariel Martín; On elliptic curves of prime power conductor over imaginary quadratic fields with class number 1; London Mathematical Society; Proceedings of the London Mathematical Society; 118; 5; 5-2019; 1245-1276 0024-6115 1460-244X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/119668 |
identifier_str_mv |
Cremona, John; Pacetti, Ariel Martín; On elliptic curves of prime power conductor over imaginary quadratic fields with class number 1; London Mathematical Society; Proceedings of the London Mathematical Society; 118; 5; 5-2019; 1245-1276 0024-6115 1460-244X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1112/plms.12214 info:eu-repo/semantics/altIdentifier/url/https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms.12214 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
London Mathematical Society |
publisher.none.fl_str_mv |
London Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083050480336896 |
score |
13.22299 |