On elliptic curves of prime power conductor over imaginary quadratic fields with class number 1

Autores
Cremona, John; Pacetti, Ariel Martín
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The main result of this paper is to extend from Q to each of the nine imaginary quadratic fields of class number 1 a result of [Serre, Duke Math. J. 54 (1987) 179–230] and [Mestre–Oesterlé, J. reine. angew. Math 400 (1989) 173–184], namely that if E is an elliptic curve of prime conductor, then either E or a 2-, 3- or 5-isogenous curve has prime discriminant. For four of the nine fields, the theorem holds with no change, while for the remaining five fields the discriminant of a curve with prime conductor is (up to isogeny) either prime or the square of a prime. The proof is conditional in two ways: first that the curves are modular, so are associated to suitable Bianchi newforms; and second that a certain level-lowering conjecture holds for Bianchi newforms. We also classify all elliptic curves of prime power conductor and non-trivial torsion over each of the nine fields: in the case of 2-torsion, we find that such curves either have CM or with a small finite number of exceptions arise from a family analogous to the Setzer–Neumann family over Q.
Fil: Cremona, John. University of Warwick; Reino Unido
Fil: Pacetti, Ariel Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Materia
11G05 (PRIMARY)
14H52 (SECONDARY)
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/119668

id CONICETDig_7767a60eb9c577f901b791eb887d0bd4
oai_identifier_str oai:ri.conicet.gov.ar:11336/119668
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On elliptic curves of prime power conductor over imaginary quadratic fields with class number 1Cremona, JohnPacetti, Ariel Martín11G05 (PRIMARY)14H52 (SECONDARY)https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The main result of this paper is to extend from Q to each of the nine imaginary quadratic fields of class number 1 a result of [Serre, Duke Math. J. 54 (1987) 179–230] and [Mestre–Oesterlé, J. reine. angew. Math 400 (1989) 173–184], namely that if E is an elliptic curve of prime conductor, then either E or a 2-, 3- or 5-isogenous curve has prime discriminant. For four of the nine fields, the theorem holds with no change, while for the remaining five fields the discriminant of a curve with prime conductor is (up to isogeny) either prime or the square of a prime. The proof is conditional in two ways: first that the curves are modular, so are associated to suitable Bianchi newforms; and second that a certain level-lowering conjecture holds for Bianchi newforms. We also classify all elliptic curves of prime power conductor and non-trivial torsion over each of the nine fields: in the case of 2-torsion, we find that such curves either have CM or with a small finite number of exceptions arise from a family analogous to the Setzer–Neumann family over Q.Fil: Cremona, John. University of Warwick; Reino UnidoFil: Pacetti, Ariel Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaLondon Mathematical Society2019-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/119668Cremona, John; Pacetti, Ariel Martín; On elliptic curves of prime power conductor over imaginary quadratic fields with class number 1; London Mathematical Society; Proceedings of the London Mathematical Society; 118; 5; 5-2019; 1245-12760024-61151460-244XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1112/plms.12214info:eu-repo/semantics/altIdentifier/url/https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms.12214info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:52:16Zoai:ri.conicet.gov.ar:11336/119668instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:52:16.598CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On elliptic curves of prime power conductor over imaginary quadratic fields with class number 1
title On elliptic curves of prime power conductor over imaginary quadratic fields with class number 1
spellingShingle On elliptic curves of prime power conductor over imaginary quadratic fields with class number 1
Cremona, John
11G05 (PRIMARY)
14H52 (SECONDARY)
title_short On elliptic curves of prime power conductor over imaginary quadratic fields with class number 1
title_full On elliptic curves of prime power conductor over imaginary quadratic fields with class number 1
title_fullStr On elliptic curves of prime power conductor over imaginary quadratic fields with class number 1
title_full_unstemmed On elliptic curves of prime power conductor over imaginary quadratic fields with class number 1
title_sort On elliptic curves of prime power conductor over imaginary quadratic fields with class number 1
dc.creator.none.fl_str_mv Cremona, John
Pacetti, Ariel Martín
author Cremona, John
author_facet Cremona, John
Pacetti, Ariel Martín
author_role author
author2 Pacetti, Ariel Martín
author2_role author
dc.subject.none.fl_str_mv 11G05 (PRIMARY)
14H52 (SECONDARY)
topic 11G05 (PRIMARY)
14H52 (SECONDARY)
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The main result of this paper is to extend from Q to each of the nine imaginary quadratic fields of class number 1 a result of [Serre, Duke Math. J. 54 (1987) 179–230] and [Mestre–Oesterlé, J. reine. angew. Math 400 (1989) 173–184], namely that if E is an elliptic curve of prime conductor, then either E or a 2-, 3- or 5-isogenous curve has prime discriminant. For four of the nine fields, the theorem holds with no change, while for the remaining five fields the discriminant of a curve with prime conductor is (up to isogeny) either prime or the square of a prime. The proof is conditional in two ways: first that the curves are modular, so are associated to suitable Bianchi newforms; and second that a certain level-lowering conjecture holds for Bianchi newforms. We also classify all elliptic curves of prime power conductor and non-trivial torsion over each of the nine fields: in the case of 2-torsion, we find that such curves either have CM or with a small finite number of exceptions arise from a family analogous to the Setzer–Neumann family over Q.
Fil: Cremona, John. University of Warwick; Reino Unido
Fil: Pacetti, Ariel Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
description The main result of this paper is to extend from Q to each of the nine imaginary quadratic fields of class number 1 a result of [Serre, Duke Math. J. 54 (1987) 179–230] and [Mestre–Oesterlé, J. reine. angew. Math 400 (1989) 173–184], namely that if E is an elliptic curve of prime conductor, then either E or a 2-, 3- or 5-isogenous curve has prime discriminant. For four of the nine fields, the theorem holds with no change, while for the remaining five fields the discriminant of a curve with prime conductor is (up to isogeny) either prime or the square of a prime. The proof is conditional in two ways: first that the curves are modular, so are associated to suitable Bianchi newforms; and second that a certain level-lowering conjecture holds for Bianchi newforms. We also classify all elliptic curves of prime power conductor and non-trivial torsion over each of the nine fields: in the case of 2-torsion, we find that such curves either have CM or with a small finite number of exceptions arise from a family analogous to the Setzer–Neumann family over Q.
publishDate 2019
dc.date.none.fl_str_mv 2019-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/119668
Cremona, John; Pacetti, Ariel Martín; On elliptic curves of prime power conductor over imaginary quadratic fields with class number 1; London Mathematical Society; Proceedings of the London Mathematical Society; 118; 5; 5-2019; 1245-1276
0024-6115
1460-244X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/119668
identifier_str_mv Cremona, John; Pacetti, Ariel Martín; On elliptic curves of prime power conductor over imaginary quadratic fields with class number 1; London Mathematical Society; Proceedings of the London Mathematical Society; 118; 5; 5-2019; 1245-1276
0024-6115
1460-244X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1112/plms.12214
info:eu-repo/semantics/altIdentifier/url/https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms.12214
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv London Mathematical Society
publisher.none.fl_str_mv London Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083050480336896
score 13.22299