On the homology of graded Lie algebras
- Autores
- Tirao, Paulo Andres
- Año de publicación
- 2001
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider the homology of finite-dimensional-graded Lie algebras with coefficients in a finite-dimensional-graded module. By a combinatorial approach we give a lower bound for their total homology. Our result extends a result of Deninger and Singhof for the case of trivial coefficients. Applications for 2-step and free nilpotent Lie algebras are given. © 2001 Elsevier Science B.V.
Fil: Tirao, Paulo Andres. The Abdus Salam International Centre for Theoretical Physics; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
17B56
17B70 - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/130539
Ver los metadatos del registro completo
id |
CONICETDig_5816596509c75355c91af28928934b64 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/130539 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the homology of graded Lie algebrasTirao, Paulo Andres17B5617B70https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider the homology of finite-dimensional-graded Lie algebras with coefficients in a finite-dimensional-graded module. By a combinatorial approach we give a lower bound for their total homology. Our result extends a result of Deninger and Singhof for the case of trivial coefficients. Applications for 2-step and free nilpotent Lie algebras are given. © 2001 Elsevier Science B.V.Fil: Tirao, Paulo Andres. The Abdus Salam International Centre for Theoretical Physics; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaElsevier Science2001-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/130539Tirao, Paulo Andres; On the homology of graded Lie algebras; Elsevier Science; Journal Of Pure And Applied Algebra; 156; 2-3; 2-2001; 357-3660022-4049CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022404900000451info:eu-repo/semantics/altIdentifier/doi/10.1016/S0022-4049(00)00045-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:43Zoai:ri.conicet.gov.ar:11336/130539instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:43.697CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the homology of graded Lie algebras |
title |
On the homology of graded Lie algebras |
spellingShingle |
On the homology of graded Lie algebras Tirao, Paulo Andres 17B56 17B70 |
title_short |
On the homology of graded Lie algebras |
title_full |
On the homology of graded Lie algebras |
title_fullStr |
On the homology of graded Lie algebras |
title_full_unstemmed |
On the homology of graded Lie algebras |
title_sort |
On the homology of graded Lie algebras |
dc.creator.none.fl_str_mv |
Tirao, Paulo Andres |
author |
Tirao, Paulo Andres |
author_facet |
Tirao, Paulo Andres |
author_role |
author |
dc.subject.none.fl_str_mv |
17B56 17B70 |
topic |
17B56 17B70 |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider the homology of finite-dimensional-graded Lie algebras with coefficients in a finite-dimensional-graded module. By a combinatorial approach we give a lower bound for their total homology. Our result extends a result of Deninger and Singhof for the case of trivial coefficients. Applications for 2-step and free nilpotent Lie algebras are given. © 2001 Elsevier Science B.V. Fil: Tirao, Paulo Andres. The Abdus Salam International Centre for Theoretical Physics; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
We consider the homology of finite-dimensional-graded Lie algebras with coefficients in a finite-dimensional-graded module. By a combinatorial approach we give a lower bound for their total homology. Our result extends a result of Deninger and Singhof for the case of trivial coefficients. Applications for 2-step and free nilpotent Lie algebras are given. © 2001 Elsevier Science B.V. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/130539 Tirao, Paulo Andres; On the homology of graded Lie algebras; Elsevier Science; Journal Of Pure And Applied Algebra; 156; 2-3; 2-2001; 357-366 0022-4049 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/130539 |
identifier_str_mv |
Tirao, Paulo Andres; On the homology of graded Lie algebras; Elsevier Science; Journal Of Pure And Applied Algebra; 156; 2-3; 2-2001; 357-366 0022-4049 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022404900000451 info:eu-repo/semantics/altIdentifier/doi/10.1016/S0022-4049(00)00045-1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613257221898240 |
score |
13.070432 |