On the homology of graded Lie algebras

Autores
Tirao, Paulo Andres
Año de publicación
2001
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider the homology of finite-dimensional-graded Lie algebras with coefficients in a finite-dimensional-graded module. By a combinatorial approach we give a lower bound for their total homology. Our result extends a result of Deninger and Singhof for the case of trivial coefficients. Applications for 2-step and free nilpotent Lie algebras are given. © 2001 Elsevier Science B.V.
Fil: Tirao, Paulo Andres. The Abdus Salam International Centre for Theoretical Physics; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Materia
17B56
17B70
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/130539

id CONICETDig_5816596509c75355c91af28928934b64
oai_identifier_str oai:ri.conicet.gov.ar:11336/130539
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On the homology of graded Lie algebrasTirao, Paulo Andres17B5617B70https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider the homology of finite-dimensional-graded Lie algebras with coefficients in a finite-dimensional-graded module. By a combinatorial approach we give a lower bound for their total homology. Our result extends a result of Deninger and Singhof for the case of trivial coefficients. Applications for 2-step and free nilpotent Lie algebras are given. © 2001 Elsevier Science B.V.Fil: Tirao, Paulo Andres. The Abdus Salam International Centre for Theoretical Physics; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaElsevier Science2001-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/130539Tirao, Paulo Andres; On the homology of graded Lie algebras; Elsevier Science; Journal Of Pure And Applied Algebra; 156; 2-3; 2-2001; 357-3660022-4049CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022404900000451info:eu-repo/semantics/altIdentifier/doi/10.1016/S0022-4049(00)00045-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:43Zoai:ri.conicet.gov.ar:11336/130539instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:43.697CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On the homology of graded Lie algebras
title On the homology of graded Lie algebras
spellingShingle On the homology of graded Lie algebras
Tirao, Paulo Andres
17B56
17B70
title_short On the homology of graded Lie algebras
title_full On the homology of graded Lie algebras
title_fullStr On the homology of graded Lie algebras
title_full_unstemmed On the homology of graded Lie algebras
title_sort On the homology of graded Lie algebras
dc.creator.none.fl_str_mv Tirao, Paulo Andres
author Tirao, Paulo Andres
author_facet Tirao, Paulo Andres
author_role author
dc.subject.none.fl_str_mv 17B56
17B70
topic 17B56
17B70
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We consider the homology of finite-dimensional-graded Lie algebras with coefficients in a finite-dimensional-graded module. By a combinatorial approach we give a lower bound for their total homology. Our result extends a result of Deninger and Singhof for the case of trivial coefficients. Applications for 2-step and free nilpotent Lie algebras are given. © 2001 Elsevier Science B.V.
Fil: Tirao, Paulo Andres. The Abdus Salam International Centre for Theoretical Physics; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
description We consider the homology of finite-dimensional-graded Lie algebras with coefficients in a finite-dimensional-graded module. By a combinatorial approach we give a lower bound for their total homology. Our result extends a result of Deninger and Singhof for the case of trivial coefficients. Applications for 2-step and free nilpotent Lie algebras are given. © 2001 Elsevier Science B.V.
publishDate 2001
dc.date.none.fl_str_mv 2001-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/130539
Tirao, Paulo Andres; On the homology of graded Lie algebras; Elsevier Science; Journal Of Pure And Applied Algebra; 156; 2-3; 2-2001; 357-366
0022-4049
CONICET Digital
CONICET
url http://hdl.handle.net/11336/130539
identifier_str_mv Tirao, Paulo Andres; On the homology of graded Lie algebras; Elsevier Science; Journal Of Pure And Applied Algebra; 156; 2-3; 2-2001; 357-366
0022-4049
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022404900000451
info:eu-repo/semantics/altIdentifier/doi/10.1016/S0022-4049(00)00045-1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613257221898240
score 13.070432