Convergence Criterium of Numerical Chaotic Solutions Based on Statistical Measures
- Autores
- Bastos de Figueiredo, Julio Cesar; Diambra, Luis Anibal; Coraci Pereira, Malta
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Solutions of most nonlinear differential equations have to be obtained numerically. The time series obtained by numerical integration will be a solution of the differential equation only if it is independent of the integration step h. A numerical solution is considered to have converged, when the difference between the time series for steps h and h/2 becomes smaller as h decreases. Unfortunately, this convergence criterium is unsuitable in the case of a chaotic solution, due to the extreme sensitivity to initial conditions that is characteristic of this kind of solution. We present here a criterium of convergence that involves the comparison of the attractors associated to the time series for integration time steps h and h/2. We show that the probability that the chaotic attractors associated to these time series are the same increases monotonically as the integration step h is decreased. The comparison of attractors is made using 1) the method of correlation integral, and 2) the method of statistical distance of probability distributions.
Fil: Bastos de Figueiredo, Julio Cesar. Escola Superior de Propaganda e Marketing; Brasil
Fil: Diambra, Luis Anibal. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Coraci Pereira, Malta. Universidade de Sao Paulo; Brasil - Materia
-
Chaotic Attractor
Statistical Measure
Numerical Integration - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/101960
Ver los metadatos del registro completo
| id |
CONICETDig_888a25c7e4776cd893d9ac07e3b514b8 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/101960 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Convergence Criterium of Numerical Chaotic Solutions Based on Statistical MeasuresBastos de Figueiredo, Julio CesarDiambra, Luis AnibalCoraci Pereira, MaltaChaotic AttractorStatistical MeasureNumerical Integrationhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Solutions of most nonlinear differential equations have to be obtained numerically. The time series obtained by numerical integration will be a solution of the differential equation only if it is independent of the integration step h. A numerical solution is considered to have converged, when the difference between the time series for steps h and h/2 becomes smaller as h decreases. Unfortunately, this convergence criterium is unsuitable in the case of a chaotic solution, due to the extreme sensitivity to initial conditions that is characteristic of this kind of solution. We present here a criterium of convergence that involves the comparison of the attractors associated to the time series for integration time steps h and h/2. We show that the probability that the chaotic attractors associated to these time series are the same increases monotonically as the integration step h is decreased. The comparison of attractors is made using 1) the method of correlation integral, and 2) the method of statistical distance of probability distributions.Fil: Bastos de Figueiredo, Julio Cesar. Escola Superior de Propaganda e Marketing; BrasilFil: Diambra, Luis Anibal. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Coraci Pereira, Malta. Universidade de Sao Paulo; BrasilScientific Research Publishing2011-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/101960Bastos de Figueiredo, Julio Cesar; Diambra, Luis Anibal; Coraci Pereira, Malta; Convergence Criterium of Numerical Chaotic Solutions Based on Statistical Measures; Scientific Research Publishing; Applied Mathematics; 2; 4; 4-2011; 436-4432152-7385CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.scirp.org/journal/paperinformation.aspx?paperid=4505info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:39:20Zoai:ri.conicet.gov.ar:11336/101960instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:39:20.393CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Convergence Criterium of Numerical Chaotic Solutions Based on Statistical Measures |
| title |
Convergence Criterium of Numerical Chaotic Solutions Based on Statistical Measures |
| spellingShingle |
Convergence Criterium of Numerical Chaotic Solutions Based on Statistical Measures Bastos de Figueiredo, Julio Cesar Chaotic Attractor Statistical Measure Numerical Integration |
| title_short |
Convergence Criterium of Numerical Chaotic Solutions Based on Statistical Measures |
| title_full |
Convergence Criterium of Numerical Chaotic Solutions Based on Statistical Measures |
| title_fullStr |
Convergence Criterium of Numerical Chaotic Solutions Based on Statistical Measures |
| title_full_unstemmed |
Convergence Criterium of Numerical Chaotic Solutions Based on Statistical Measures |
| title_sort |
Convergence Criterium of Numerical Chaotic Solutions Based on Statistical Measures |
| dc.creator.none.fl_str_mv |
Bastos de Figueiredo, Julio Cesar Diambra, Luis Anibal Coraci Pereira, Malta |
| author |
Bastos de Figueiredo, Julio Cesar |
| author_facet |
Bastos de Figueiredo, Julio Cesar Diambra, Luis Anibal Coraci Pereira, Malta |
| author_role |
author |
| author2 |
Diambra, Luis Anibal Coraci Pereira, Malta |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Chaotic Attractor Statistical Measure Numerical Integration |
| topic |
Chaotic Attractor Statistical Measure Numerical Integration |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Solutions of most nonlinear differential equations have to be obtained numerically. The time series obtained by numerical integration will be a solution of the differential equation only if it is independent of the integration step h. A numerical solution is considered to have converged, when the difference between the time series for steps h and h/2 becomes smaller as h decreases. Unfortunately, this convergence criterium is unsuitable in the case of a chaotic solution, due to the extreme sensitivity to initial conditions that is characteristic of this kind of solution. We present here a criterium of convergence that involves the comparison of the attractors associated to the time series for integration time steps h and h/2. We show that the probability that the chaotic attractors associated to these time series are the same increases monotonically as the integration step h is decreased. The comparison of attractors is made using 1) the method of correlation integral, and 2) the method of statistical distance of probability distributions. Fil: Bastos de Figueiredo, Julio Cesar. Escola Superior de Propaganda e Marketing; Brasil Fil: Diambra, Luis Anibal. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina Fil: Coraci Pereira, Malta. Universidade de Sao Paulo; Brasil |
| description |
Solutions of most nonlinear differential equations have to be obtained numerically. The time series obtained by numerical integration will be a solution of the differential equation only if it is independent of the integration step h. A numerical solution is considered to have converged, when the difference between the time series for steps h and h/2 becomes smaller as h decreases. Unfortunately, this convergence criterium is unsuitable in the case of a chaotic solution, due to the extreme sensitivity to initial conditions that is characteristic of this kind of solution. We present here a criterium of convergence that involves the comparison of the attractors associated to the time series for integration time steps h and h/2. We show that the probability that the chaotic attractors associated to these time series are the same increases monotonically as the integration step h is decreased. The comparison of attractors is made using 1) the method of correlation integral, and 2) the method of statistical distance of probability distributions. |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/101960 Bastos de Figueiredo, Julio Cesar; Diambra, Luis Anibal; Coraci Pereira, Malta; Convergence Criterium of Numerical Chaotic Solutions Based on Statistical Measures; Scientific Research Publishing; Applied Mathematics; 2; 4; 4-2011; 436-443 2152-7385 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/101960 |
| identifier_str_mv |
Bastos de Figueiredo, Julio Cesar; Diambra, Luis Anibal; Coraci Pereira, Malta; Convergence Criterium of Numerical Chaotic Solutions Based on Statistical Measures; Scientific Research Publishing; Applied Mathematics; 2; 4; 4-2011; 436-443 2152-7385 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.scirp.org/journal/paperinformation.aspx?paperid=4505 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Scientific Research Publishing |
| publisher.none.fl_str_mv |
Scientific Research Publishing |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782057220407296 |
| score |
12.982451 |