Convergence Criterium of Numerical Chaotic Solutions Based on Statistical Measures
- Autores
- Bastos de Figueiredo, Julio Cesar; Diambra, Luis Anibal; Coraci Pereira, Malta
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Solutions of most nonlinear differential equations have to be obtained numerically. The time series obtained by numerical integration will be a solution of the differential equation only if it is independent of the integration step h. A numerical solution is considered to have converged, when the difference between the time series for steps h and h/2 becomes smaller as h decreases. Unfortunately, this convergence criterium is unsuitable in the case of a chaotic solution, due to the extreme sensitivity to initial conditions that is characteristic of this kind of solution. We present here a criterium of convergence that involves the comparison of the attractors associated to the time series for integration time steps h and h/2. We show that the probability that the chaotic attractors associated to these time series are the same increases monotonically as the integration step h is decreased. The comparison of attractors is made using 1) the method of correlation integral, and 2) the method of statistical distance of probability distributions.
Fil: Bastos de Figueiredo, Julio Cesar. Escola Superior de Propaganda e Marketing; Brasil
Fil: Diambra, Luis Anibal. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Coraci Pereira, Malta. Universidade de Sao Paulo; Brasil - Materia
-
Chaotic Attractor
Statistical Measure
Numerical Integration - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/101960
Ver los metadatos del registro completo
id |
CONICETDig_888a25c7e4776cd893d9ac07e3b514b8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/101960 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Convergence Criterium of Numerical Chaotic Solutions Based on Statistical MeasuresBastos de Figueiredo, Julio CesarDiambra, Luis AnibalCoraci Pereira, MaltaChaotic AttractorStatistical MeasureNumerical Integrationhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Solutions of most nonlinear differential equations have to be obtained numerically. The time series obtained by numerical integration will be a solution of the differential equation only if it is independent of the integration step h. A numerical solution is considered to have converged, when the difference between the time series for steps h and h/2 becomes smaller as h decreases. Unfortunately, this convergence criterium is unsuitable in the case of a chaotic solution, due to the extreme sensitivity to initial conditions that is characteristic of this kind of solution. We present here a criterium of convergence that involves the comparison of the attractors associated to the time series for integration time steps h and h/2. We show that the probability that the chaotic attractors associated to these time series are the same increases monotonically as the integration step h is decreased. The comparison of attractors is made using 1) the method of correlation integral, and 2) the method of statistical distance of probability distributions.Fil: Bastos de Figueiredo, Julio Cesar. Escola Superior de Propaganda e Marketing; BrasilFil: Diambra, Luis Anibal. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Coraci Pereira, Malta. Universidade de Sao Paulo; BrasilScientific Research Publishing2011-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/101960Bastos de Figueiredo, Julio Cesar; Diambra, Luis Anibal; Coraci Pereira, Malta; Convergence Criterium of Numerical Chaotic Solutions Based on Statistical Measures; Scientific Research Publishing; Applied Mathematics; 2; 4; 4-2011; 436-4432152-7385CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.scirp.org/journal/paperinformation.aspx?paperid=4505info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:14:06Zoai:ri.conicet.gov.ar:11336/101960instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:14:07.029CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Convergence Criterium of Numerical Chaotic Solutions Based on Statistical Measures |
title |
Convergence Criterium of Numerical Chaotic Solutions Based on Statistical Measures |
spellingShingle |
Convergence Criterium of Numerical Chaotic Solutions Based on Statistical Measures Bastos de Figueiredo, Julio Cesar Chaotic Attractor Statistical Measure Numerical Integration |
title_short |
Convergence Criterium of Numerical Chaotic Solutions Based on Statistical Measures |
title_full |
Convergence Criterium of Numerical Chaotic Solutions Based on Statistical Measures |
title_fullStr |
Convergence Criterium of Numerical Chaotic Solutions Based on Statistical Measures |
title_full_unstemmed |
Convergence Criterium of Numerical Chaotic Solutions Based on Statistical Measures |
title_sort |
Convergence Criterium of Numerical Chaotic Solutions Based on Statistical Measures |
dc.creator.none.fl_str_mv |
Bastos de Figueiredo, Julio Cesar Diambra, Luis Anibal Coraci Pereira, Malta |
author |
Bastos de Figueiredo, Julio Cesar |
author_facet |
Bastos de Figueiredo, Julio Cesar Diambra, Luis Anibal Coraci Pereira, Malta |
author_role |
author |
author2 |
Diambra, Luis Anibal Coraci Pereira, Malta |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Chaotic Attractor Statistical Measure Numerical Integration |
topic |
Chaotic Attractor Statistical Measure Numerical Integration |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Solutions of most nonlinear differential equations have to be obtained numerically. The time series obtained by numerical integration will be a solution of the differential equation only if it is independent of the integration step h. A numerical solution is considered to have converged, when the difference between the time series for steps h and h/2 becomes smaller as h decreases. Unfortunately, this convergence criterium is unsuitable in the case of a chaotic solution, due to the extreme sensitivity to initial conditions that is characteristic of this kind of solution. We present here a criterium of convergence that involves the comparison of the attractors associated to the time series for integration time steps h and h/2. We show that the probability that the chaotic attractors associated to these time series are the same increases monotonically as the integration step h is decreased. The comparison of attractors is made using 1) the method of correlation integral, and 2) the method of statistical distance of probability distributions. Fil: Bastos de Figueiredo, Julio Cesar. Escola Superior de Propaganda e Marketing; Brasil Fil: Diambra, Luis Anibal. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina Fil: Coraci Pereira, Malta. Universidade de Sao Paulo; Brasil |
description |
Solutions of most nonlinear differential equations have to be obtained numerically. The time series obtained by numerical integration will be a solution of the differential equation only if it is independent of the integration step h. A numerical solution is considered to have converged, when the difference between the time series for steps h and h/2 becomes smaller as h decreases. Unfortunately, this convergence criterium is unsuitable in the case of a chaotic solution, due to the extreme sensitivity to initial conditions that is characteristic of this kind of solution. We present here a criterium of convergence that involves the comparison of the attractors associated to the time series for integration time steps h and h/2. We show that the probability that the chaotic attractors associated to these time series are the same increases monotonically as the integration step h is decreased. The comparison of attractors is made using 1) the method of correlation integral, and 2) the method of statistical distance of probability distributions. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/101960 Bastos de Figueiredo, Julio Cesar; Diambra, Luis Anibal; Coraci Pereira, Malta; Convergence Criterium of Numerical Chaotic Solutions Based on Statistical Measures; Scientific Research Publishing; Applied Mathematics; 2; 4; 4-2011; 436-443 2152-7385 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/101960 |
identifier_str_mv |
Bastos de Figueiredo, Julio Cesar; Diambra, Luis Anibal; Coraci Pereira, Malta; Convergence Criterium of Numerical Chaotic Solutions Based on Statistical Measures; Scientific Research Publishing; Applied Mathematics; 2; 4; 4-2011; 436-443 2152-7385 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.scirp.org/journal/paperinformation.aspx?paperid=4505 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Scientific Research Publishing |
publisher.none.fl_str_mv |
Scientific Research Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980751486746624 |
score |
12.993085 |