A statistical formalism for alignment analysis
- Autores
- Dávila Kurbán, Federico; Lares, Marcelo; Garcia Lambas, Diego Rodolfo
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The detection of anisotropies with respect to a given direction in a vector field is a common problem in astronomy. Several methods have been proposed that rely on the distribution of the acute angles between the data and a reference direction. Different approaches use Monte Carlo methods to quantify the statistical significance of a signal, although often lacking an analytical framework. Here we present two methods to detect and quantify alignment signals and test their statistical robustness. The first method considers the deviance of the relative fraction of vector components in the plane perpendicular to a reference direction with respect to an isotropic distribution. We also derive the statistical properties and stability of the resulting estimator, and therefore does not rely on Monte Carlo simulations to assess its statistical significance. The second method is based on a fit over the residuals of the empirical cumulative distribution function with respect to that expected for a uniform distribution, using a small set of harmonic orthogonal functions, which does not rely on any binning scheme. We compare these methods with others commonly used in the literature, using Monte Carlo simulations, finding that the proposed statistics allow the detection of alignment signals with greater significance.
Fil: Dávila Kurbán, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Lares, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Garcia Lambas, Diego Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina - Materia
-
METHODS: STATISTICAL
METHODS: NUMERICAL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/203025
Ver los metadatos del registro completo
id |
CONICETDig_6444d3d5f536bd5106c5064fbb605044 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/203025 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A statistical formalism for alignment analysisDávila Kurbán, FedericoLares, MarceloGarcia Lambas, Diego RodolfoMETHODS: STATISTICALMETHODS: NUMERICALhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The detection of anisotropies with respect to a given direction in a vector field is a common problem in astronomy. Several methods have been proposed that rely on the distribution of the acute angles between the data and a reference direction. Different approaches use Monte Carlo methods to quantify the statistical significance of a signal, although often lacking an analytical framework. Here we present two methods to detect and quantify alignment signals and test their statistical robustness. The first method considers the deviance of the relative fraction of vector components in the plane perpendicular to a reference direction with respect to an isotropic distribution. We also derive the statistical properties and stability of the resulting estimator, and therefore does not rely on Monte Carlo simulations to assess its statistical significance. The second method is based on a fit over the residuals of the empirical cumulative distribution function with respect to that expected for a uniform distribution, using a small set of harmonic orthogonal functions, which does not rely on any binning scheme. We compare these methods with others commonly used in the literature, using Monte Carlo simulations, finding that the proposed statistics allow the detection of alignment signals with greater significance.Fil: Dávila Kurbán, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Lares, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Garcia Lambas, Diego Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaCornell University2022-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/203025Dávila Kurbán, Federico; Lares, Marcelo; Garcia Lambas, Diego Rodolfo; A statistical formalism for alignment analysis; Cornell University; ArXiv.org; 2-20222331-8422CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2202.13244info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:25:29Zoai:ri.conicet.gov.ar:11336/203025instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:25:29.877CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A statistical formalism for alignment analysis |
title |
A statistical formalism for alignment analysis |
spellingShingle |
A statistical formalism for alignment analysis Dávila Kurbán, Federico METHODS: STATISTICAL METHODS: NUMERICAL |
title_short |
A statistical formalism for alignment analysis |
title_full |
A statistical formalism for alignment analysis |
title_fullStr |
A statistical formalism for alignment analysis |
title_full_unstemmed |
A statistical formalism for alignment analysis |
title_sort |
A statistical formalism for alignment analysis |
dc.creator.none.fl_str_mv |
Dávila Kurbán, Federico Lares, Marcelo Garcia Lambas, Diego Rodolfo |
author |
Dávila Kurbán, Federico |
author_facet |
Dávila Kurbán, Federico Lares, Marcelo Garcia Lambas, Diego Rodolfo |
author_role |
author |
author2 |
Lares, Marcelo Garcia Lambas, Diego Rodolfo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
METHODS: STATISTICAL METHODS: NUMERICAL |
topic |
METHODS: STATISTICAL METHODS: NUMERICAL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The detection of anisotropies with respect to a given direction in a vector field is a common problem in astronomy. Several methods have been proposed that rely on the distribution of the acute angles between the data and a reference direction. Different approaches use Monte Carlo methods to quantify the statistical significance of a signal, although often lacking an analytical framework. Here we present two methods to detect and quantify alignment signals and test their statistical robustness. The first method considers the deviance of the relative fraction of vector components in the plane perpendicular to a reference direction with respect to an isotropic distribution. We also derive the statistical properties and stability of the resulting estimator, and therefore does not rely on Monte Carlo simulations to assess its statistical significance. The second method is based on a fit over the residuals of the empirical cumulative distribution function with respect to that expected for a uniform distribution, using a small set of harmonic orthogonal functions, which does not rely on any binning scheme. We compare these methods with others commonly used in the literature, using Monte Carlo simulations, finding that the proposed statistics allow the detection of alignment signals with greater significance. Fil: Dávila Kurbán, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Lares, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina Fil: Garcia Lambas, Diego Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina |
description |
The detection of anisotropies with respect to a given direction in a vector field is a common problem in astronomy. Several methods have been proposed that rely on the distribution of the acute angles between the data and a reference direction. Different approaches use Monte Carlo methods to quantify the statistical significance of a signal, although often lacking an analytical framework. Here we present two methods to detect and quantify alignment signals and test their statistical robustness. The first method considers the deviance of the relative fraction of vector components in the plane perpendicular to a reference direction with respect to an isotropic distribution. We also derive the statistical properties and stability of the resulting estimator, and therefore does not rely on Monte Carlo simulations to assess its statistical significance. The second method is based on a fit over the residuals of the empirical cumulative distribution function with respect to that expected for a uniform distribution, using a small set of harmonic orthogonal functions, which does not rely on any binning scheme. We compare these methods with others commonly used in the literature, using Monte Carlo simulations, finding that the proposed statistics allow the detection of alignment signals with greater significance. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/203025 Dávila Kurbán, Federico; Lares, Marcelo; Garcia Lambas, Diego Rodolfo; A statistical formalism for alignment analysis; Cornell University; ArXiv.org; 2-2022 2331-8422 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/203025 |
identifier_str_mv |
Dávila Kurbán, Federico; Lares, Marcelo; Garcia Lambas, Diego Rodolfo; A statistical formalism for alignment analysis; Cornell University; ArXiv.org; 2-2022 2331-8422 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2202.13244 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cornell University |
publisher.none.fl_str_mv |
Cornell University |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614253543161856 |
score |
13.070432 |