On the convergence of the Sakawa-Shindo algorithm in stochastic control
- Autores
- Bonnans, J. Frédéric; Gianatti, Justina; Silva, Francisco J.
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We analyze an algorithm for solving stochastic control problems, based on Pontryagin’s maximum principle, due to Sakawa and Shindo in the deterministic case and extended to the stochastic setting by Mazliak. We assume that either the volatility is an affine function of the state, or the dynamics are linear. We obtain a monotone decrease of the cost functions as well as, in the convex case, the fact that the sequence of controls is minimizing, and converges to an optimal solution if it is bounded. In a specific case we interpret the algorithm as the gradient plus projection method and obtain a linear convergence rate to the solution.
Fil: Bonnans, J. Frédéric. Ecole Polytechnique and Laboratoire de Finance des Marchés d'Énergie. Centre de Mathématiques Appliquées; Francia. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Gianatti, Justina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Silva, Francisco J.. Université de Limoges. Faculté des sciences et techniques; Francia. Centre National de la Recherche Scientifique; Francia - Materia
-
FIRST ORDER ALGORITHM
PONTRYAGIN'S PRINCIPLE
STOCHASTIC CONTROL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/50342
Ver los metadatos del registro completo
id |
CONICETDig_cdb301f612c8f6ee9f60d6ced98d4a81 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/50342 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the convergence of the Sakawa-Shindo algorithm in stochastic controlBonnans, J. FrédéricGianatti, JustinaSilva, Francisco J.FIRST ORDER ALGORITHMPONTRYAGIN'S PRINCIPLESTOCHASTIC CONTROLhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We analyze an algorithm for solving stochastic control problems, based on Pontryagin’s maximum principle, due to Sakawa and Shindo in the deterministic case and extended to the stochastic setting by Mazliak. We assume that either the volatility is an affine function of the state, or the dynamics are linear. We obtain a monotone decrease of the cost functions as well as, in the convex case, the fact that the sequence of controls is minimizing, and converges to an optimal solution if it is bounded. In a specific case we interpret the algorithm as the gradient plus projection method and obtain a linear convergence rate to the solution.Fil: Bonnans, J. Frédéric. Ecole Polytechnique and Laboratoire de Finance des Marchés d'Énergie. Centre de Mathématiques Appliquées; Francia. Institut National de Recherche en Informatique et en Automatique; FranciaFil: Gianatti, Justina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Silva, Francisco J.. Université de Limoges. Faculté des sciences et techniques; Francia. Centre National de la Recherche Scientifique; FranciaAmerican Institute of Mathematical Sciences2016-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/50342Bonnans, J. Frédéric; Gianatti, Justina; Silva, Francisco J.; On the convergence of the Sakawa-Shindo algorithm in stochastic control; American Institute of Mathematical Sciences; Mathematical Control and Related Fields; 6; 3; 9-2016; 391-4062156-84722156-8499CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3934/mcrf.2016008info:eu-repo/semantics/altIdentifier/url/http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=12756info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:09Zoai:ri.conicet.gov.ar:11336/50342instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:09.467CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the convergence of the Sakawa-Shindo algorithm in stochastic control |
title |
On the convergence of the Sakawa-Shindo algorithm in stochastic control |
spellingShingle |
On the convergence of the Sakawa-Shindo algorithm in stochastic control Bonnans, J. Frédéric FIRST ORDER ALGORITHM PONTRYAGIN'S PRINCIPLE STOCHASTIC CONTROL |
title_short |
On the convergence of the Sakawa-Shindo algorithm in stochastic control |
title_full |
On the convergence of the Sakawa-Shindo algorithm in stochastic control |
title_fullStr |
On the convergence of the Sakawa-Shindo algorithm in stochastic control |
title_full_unstemmed |
On the convergence of the Sakawa-Shindo algorithm in stochastic control |
title_sort |
On the convergence of the Sakawa-Shindo algorithm in stochastic control |
dc.creator.none.fl_str_mv |
Bonnans, J. Frédéric Gianatti, Justina Silva, Francisco J. |
author |
Bonnans, J. Frédéric |
author_facet |
Bonnans, J. Frédéric Gianatti, Justina Silva, Francisco J. |
author_role |
author |
author2 |
Gianatti, Justina Silva, Francisco J. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
FIRST ORDER ALGORITHM PONTRYAGIN'S PRINCIPLE STOCHASTIC CONTROL |
topic |
FIRST ORDER ALGORITHM PONTRYAGIN'S PRINCIPLE STOCHASTIC CONTROL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We analyze an algorithm for solving stochastic control problems, based on Pontryagin’s maximum principle, due to Sakawa and Shindo in the deterministic case and extended to the stochastic setting by Mazliak. We assume that either the volatility is an affine function of the state, or the dynamics are linear. We obtain a monotone decrease of the cost functions as well as, in the convex case, the fact that the sequence of controls is minimizing, and converges to an optimal solution if it is bounded. In a specific case we interpret the algorithm as the gradient plus projection method and obtain a linear convergence rate to the solution. Fil: Bonnans, J. Frédéric. Ecole Polytechnique and Laboratoire de Finance des Marchés d'Énergie. Centre de Mathématiques Appliquées; Francia. Institut National de Recherche en Informatique et en Automatique; Francia Fil: Gianatti, Justina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Silva, Francisco J.. Université de Limoges. Faculté des sciences et techniques; Francia. Centre National de la Recherche Scientifique; Francia |
description |
We analyze an algorithm for solving stochastic control problems, based on Pontryagin’s maximum principle, due to Sakawa and Shindo in the deterministic case and extended to the stochastic setting by Mazliak. We assume that either the volatility is an affine function of the state, or the dynamics are linear. We obtain a monotone decrease of the cost functions as well as, in the convex case, the fact that the sequence of controls is minimizing, and converges to an optimal solution if it is bounded. In a specific case we interpret the algorithm as the gradient plus projection method and obtain a linear convergence rate to the solution. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/50342 Bonnans, J. Frédéric; Gianatti, Justina; Silva, Francisco J.; On the convergence of the Sakawa-Shindo algorithm in stochastic control; American Institute of Mathematical Sciences; Mathematical Control and Related Fields; 6; 3; 9-2016; 391-406 2156-8472 2156-8499 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/50342 |
identifier_str_mv |
Bonnans, J. Frédéric; Gianatti, Justina; Silva, Francisco J.; On the convergence of the Sakawa-Shindo algorithm in stochastic control; American Institute of Mathematical Sciences; Mathematical Control and Related Fields; 6; 3; 9-2016; 391-406 2156-8472 2156-8499 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3934/mcrf.2016008 info:eu-repo/semantics/altIdentifier/url/http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=12756 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Mathematical Sciences |
publisher.none.fl_str_mv |
American Institute of Mathematical Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269016075272192 |
score |
13.13397 |