Recursive variational autoencoders for 3D blood vessel generative modeling
- Autores
- Feldman, Paula Adi; Fainstein, Miguel; Siless, Viviana; Delrieux, Claudio Augusto; Iarussi, Emmanuel
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Anatomical trees play an important role in clinical diagnosis and treatment planning. Yet, accurately representing these structures poses significant challenges owing to their intricate and varied topology and geometry. Most existing methods to synthesize vasculature are rule based, and despite providing some degree of control and variation in the structures produced, they fail to capture the diversity and complexity of actual anatomical data. We developed a Recursive variational Neural Network (RvNN) that fully exploits the hierarchical organization of the vessel and learns a low-dimensional manifold encoding branch connectivity along with geometry features describing the target surface. After training, the RvNN latent space can be sampled to generate new vessel geometries. By leveraging the power of generative neural networks, we generate 3D models of blood vessels that are both accurate and diverse, which is crucial for medical and surgical training, hemodynamic simulations, and many other purposes. These results closely resemble real data, achieving high similarity in vessel radii, length, and tortuosity across various datasets, including those with aneurysms. To the best of our knowledge, this work is the first to utilize this technique for synthesizing blood vessels.
Fil: Feldman, Paula Adi. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella; Argentina
Fil: Fainstein, Miguel. Universidad Torcuato Di Tella; Argentina
Fil: Siless, Viviana. Universidad Torcuato Di Tella; Argentina
Fil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina
Fil: Iarussi, Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella; Argentina - Materia
-
VASCULAR 3D MODEL
GENERATIVE MODELING
NEURAL NETWORKS
VARIATIONAL AUTOENCODERS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/271369
Ver los metadatos del registro completo
id |
CONICETDig_87a09947e9b518b9829b5dcbd4ffa59d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/271369 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Recursive variational autoencoders for 3D blood vessel generative modelingFeldman, Paula AdiFainstein, MiguelSiless, VivianaDelrieux, Claudio AugustoIarussi, EmmanuelVASCULAR 3D MODELGENERATIVE MODELINGNEURAL NETWORKSVARIATIONAL AUTOENCODERShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Anatomical trees play an important role in clinical diagnosis and treatment planning. Yet, accurately representing these structures poses significant challenges owing to their intricate and varied topology and geometry. Most existing methods to synthesize vasculature are rule based, and despite providing some degree of control and variation in the structures produced, they fail to capture the diversity and complexity of actual anatomical data. We developed a Recursive variational Neural Network (RvNN) that fully exploits the hierarchical organization of the vessel and learns a low-dimensional manifold encoding branch connectivity along with geometry features describing the target surface. After training, the RvNN latent space can be sampled to generate new vessel geometries. By leveraging the power of generative neural networks, we generate 3D models of blood vessels that are both accurate and diverse, which is crucial for medical and surgical training, hemodynamic simulations, and many other purposes. These results closely resemble real data, achieving high similarity in vessel radii, length, and tortuosity across various datasets, including those with aneurysms. To the best of our knowledge, this work is the first to utilize this technique for synthesizing blood vessels.Fil: Feldman, Paula Adi. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella; ArgentinaFil: Fainstein, Miguel. Universidad Torcuato Di Tella; ArgentinaFil: Siless, Viviana. Universidad Torcuato Di Tella; ArgentinaFil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; ArgentinaFil: Iarussi, Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella; ArgentinaElsevier Science2025-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/271369Feldman, Paula Adi; Fainstein, Miguel; Siless, Viviana; Delrieux, Claudio Augusto; Iarussi, Emmanuel; Recursive variational autoencoders for 3D blood vessel generative modeling; Elsevier Science; Medical Image Analysis; 105; 103703; 10-2025; 1-131361-8415CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1361841525002506info:eu-repo/semantics/altIdentifier/doi/10.1016/j.media.2025.103703info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2506.14914v1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:06:21Zoai:ri.conicet.gov.ar:11336/271369instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:06:21.908CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Recursive variational autoencoders for 3D blood vessel generative modeling |
title |
Recursive variational autoencoders for 3D blood vessel generative modeling |
spellingShingle |
Recursive variational autoencoders for 3D blood vessel generative modeling Feldman, Paula Adi VASCULAR 3D MODEL GENERATIVE MODELING NEURAL NETWORKS VARIATIONAL AUTOENCODERS |
title_short |
Recursive variational autoencoders for 3D blood vessel generative modeling |
title_full |
Recursive variational autoencoders for 3D blood vessel generative modeling |
title_fullStr |
Recursive variational autoencoders for 3D blood vessel generative modeling |
title_full_unstemmed |
Recursive variational autoencoders for 3D blood vessel generative modeling |
title_sort |
Recursive variational autoencoders for 3D blood vessel generative modeling |
dc.creator.none.fl_str_mv |
Feldman, Paula Adi Fainstein, Miguel Siless, Viviana Delrieux, Claudio Augusto Iarussi, Emmanuel |
author |
Feldman, Paula Adi |
author_facet |
Feldman, Paula Adi Fainstein, Miguel Siless, Viviana Delrieux, Claudio Augusto Iarussi, Emmanuel |
author_role |
author |
author2 |
Fainstein, Miguel Siless, Viviana Delrieux, Claudio Augusto Iarussi, Emmanuel |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
VASCULAR 3D MODEL GENERATIVE MODELING NEURAL NETWORKS VARIATIONAL AUTOENCODERS |
topic |
VASCULAR 3D MODEL GENERATIVE MODELING NEURAL NETWORKS VARIATIONAL AUTOENCODERS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Anatomical trees play an important role in clinical diagnosis and treatment planning. Yet, accurately representing these structures poses significant challenges owing to their intricate and varied topology and geometry. Most existing methods to synthesize vasculature are rule based, and despite providing some degree of control and variation in the structures produced, they fail to capture the diversity and complexity of actual anatomical data. We developed a Recursive variational Neural Network (RvNN) that fully exploits the hierarchical organization of the vessel and learns a low-dimensional manifold encoding branch connectivity along with geometry features describing the target surface. After training, the RvNN latent space can be sampled to generate new vessel geometries. By leveraging the power of generative neural networks, we generate 3D models of blood vessels that are both accurate and diverse, which is crucial for medical and surgical training, hemodynamic simulations, and many other purposes. These results closely resemble real data, achieving high similarity in vessel radii, length, and tortuosity across various datasets, including those with aneurysms. To the best of our knowledge, this work is the first to utilize this technique for synthesizing blood vessels. Fil: Feldman, Paula Adi. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella; Argentina Fil: Fainstein, Miguel. Universidad Torcuato Di Tella; Argentina Fil: Siless, Viviana. Universidad Torcuato Di Tella; Argentina Fil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina Fil: Iarussi, Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella; Argentina |
description |
Anatomical trees play an important role in clinical diagnosis and treatment planning. Yet, accurately representing these structures poses significant challenges owing to their intricate and varied topology and geometry. Most existing methods to synthesize vasculature are rule based, and despite providing some degree of control and variation in the structures produced, they fail to capture the diversity and complexity of actual anatomical data. We developed a Recursive variational Neural Network (RvNN) that fully exploits the hierarchical organization of the vessel and learns a low-dimensional manifold encoding branch connectivity along with geometry features describing the target surface. After training, the RvNN latent space can be sampled to generate new vessel geometries. By leveraging the power of generative neural networks, we generate 3D models of blood vessels that are both accurate and diverse, which is crucial for medical and surgical training, hemodynamic simulations, and many other purposes. These results closely resemble real data, achieving high similarity in vessel radii, length, and tortuosity across various datasets, including those with aneurysms. To the best of our knowledge, this work is the first to utilize this technique for synthesizing blood vessels. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/271369 Feldman, Paula Adi; Fainstein, Miguel; Siless, Viviana; Delrieux, Claudio Augusto; Iarussi, Emmanuel; Recursive variational autoencoders for 3D blood vessel generative modeling; Elsevier Science; Medical Image Analysis; 105; 103703; 10-2025; 1-13 1361-8415 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/271369 |
identifier_str_mv |
Feldman, Paula Adi; Fainstein, Miguel; Siless, Viviana; Delrieux, Claudio Augusto; Iarussi, Emmanuel; Recursive variational autoencoders for 3D blood vessel generative modeling; Elsevier Science; Medical Image Analysis; 105; 103703; 10-2025; 1-13 1361-8415 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1361841525002506 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.media.2025.103703 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2506.14914v1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613911213506560 |
score |
13.070432 |