Generative Embeddings of Brain Collective Dynamics Using Variational Autoencoders
- Autores
- Perl, Yonatan Sanz; Bocaccio, Hernán; Pérez Ipiña, Ignacio; Zamberlán, Federico; Piccinini, Juan Ignacio; Laufs, Helmut; Kringelbach, Morten; Deco, Gustavo; Tagliazucchi, Enzo Rodolfo
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider the problem of encoding pairwise correlations between coupled dynamical systems in a low-dimensional latent space based on few distinct observations. We use variational autoencoders (VAEs) to embed temporal correlations between coupled nonlinear oscillators that model brain states in the wake-sleep cycle into a two-dimensional manifold. Training a VAE with samples generated using two different parameter combinations results in an embedding that encodes the repertoire of collective dynamics, as well as the topology of the underlying connectivity network. We first follow this approach to infer the trajectory of brain states measured from wakefulness to deep sleep from the two end points of this trajectory; then, we show that the same architecture was capable of representing the pairwise correlations of generic Landau-Stuart oscillators coupled by complex network topology.
Fil: Perl, Yonatan Sanz. Universidad de San Andrés; Argentina. Universitat Pompeu Fabra; España. Universidad de Buenos Aires; Argentina
Fil: Bocaccio, Hernán. Universidad de Buenos Aires; Argentina
Fil: Pérez Ipiña, Ignacio. Universidad de Buenos Aires; Argentina
Fil: Zamberlán, Federico. Universidad de Buenos Aires; Argentina
Fil: Piccinini, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Laufs, Helmut. Christian-Albrechts-University Kiel; Alemania
Fil: Kringelbach, Morten. University of Oxford; Reino Unido
Fil: Deco, Gustavo. Universitat Pompeu Fabra; España
Fil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina - Materia
-
Autoencoders
Dynamics
Consciousness
Machine Learning - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/146026
Ver los metadatos del registro completo
id |
CONICETDig_eaab0f3822bc522e4a82dae3ed532703 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/146026 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Generative Embeddings of Brain Collective Dynamics Using Variational AutoencodersPerl, Yonatan SanzBocaccio, HernánPérez Ipiña, IgnacioZamberlán, FedericoPiccinini, Juan IgnacioLaufs, HelmutKringelbach, MortenDeco, GustavoTagliazucchi, Enzo RodolfoAutoencodersDynamicsConsciousnessMachine Learninghttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We consider the problem of encoding pairwise correlations between coupled dynamical systems in a low-dimensional latent space based on few distinct observations. We use variational autoencoders (VAEs) to embed temporal correlations between coupled nonlinear oscillators that model brain states in the wake-sleep cycle into a two-dimensional manifold. Training a VAE with samples generated using two different parameter combinations results in an embedding that encodes the repertoire of collective dynamics, as well as the topology of the underlying connectivity network. We first follow this approach to infer the trajectory of brain states measured from wakefulness to deep sleep from the two end points of this trajectory; then, we show that the same architecture was capable of representing the pairwise correlations of generic Landau-Stuart oscillators coupled by complex network topology.Fil: Perl, Yonatan Sanz. Universidad de San Andrés; Argentina. Universitat Pompeu Fabra; España. Universidad de Buenos Aires; ArgentinaFil: Bocaccio, Hernán. Universidad de Buenos Aires; ArgentinaFil: Pérez Ipiña, Ignacio. Universidad de Buenos Aires; ArgentinaFil: Zamberlán, Federico. Universidad de Buenos Aires; ArgentinaFil: Piccinini, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Laufs, Helmut. Christian-Albrechts-University Kiel; AlemaniaFil: Kringelbach, Morten. University of Oxford; Reino UnidoFil: Deco, Gustavo. Universitat Pompeu Fabra; EspañaFil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaAmerican Physical Society2020-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/146026Perl, Yonatan Sanz; Bocaccio, Hernán; Pérez Ipiña, Ignacio; Zamberlán, Federico; Piccinini, Juan Ignacio; et al.; Generative Embeddings of Brain Collective Dynamics Using Variational Autoencoders; American Physical Society; Physical Review Letters; 125; 23; 12-2020; 1-60031-9007CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevLett.125.238101info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.238101info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:24:35Zoai:ri.conicet.gov.ar:11336/146026instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:24:35.763CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Generative Embeddings of Brain Collective Dynamics Using Variational Autoencoders |
title |
Generative Embeddings of Brain Collective Dynamics Using Variational Autoencoders |
spellingShingle |
Generative Embeddings of Brain Collective Dynamics Using Variational Autoencoders Perl, Yonatan Sanz Autoencoders Dynamics Consciousness Machine Learning |
title_short |
Generative Embeddings of Brain Collective Dynamics Using Variational Autoencoders |
title_full |
Generative Embeddings of Brain Collective Dynamics Using Variational Autoencoders |
title_fullStr |
Generative Embeddings of Brain Collective Dynamics Using Variational Autoencoders |
title_full_unstemmed |
Generative Embeddings of Brain Collective Dynamics Using Variational Autoencoders |
title_sort |
Generative Embeddings of Brain Collective Dynamics Using Variational Autoencoders |
dc.creator.none.fl_str_mv |
Perl, Yonatan Sanz Bocaccio, Hernán Pérez Ipiña, Ignacio Zamberlán, Federico Piccinini, Juan Ignacio Laufs, Helmut Kringelbach, Morten Deco, Gustavo Tagliazucchi, Enzo Rodolfo |
author |
Perl, Yonatan Sanz |
author_facet |
Perl, Yonatan Sanz Bocaccio, Hernán Pérez Ipiña, Ignacio Zamberlán, Federico Piccinini, Juan Ignacio Laufs, Helmut Kringelbach, Morten Deco, Gustavo Tagliazucchi, Enzo Rodolfo |
author_role |
author |
author2 |
Bocaccio, Hernán Pérez Ipiña, Ignacio Zamberlán, Federico Piccinini, Juan Ignacio Laufs, Helmut Kringelbach, Morten Deco, Gustavo Tagliazucchi, Enzo Rodolfo |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
Autoencoders Dynamics Consciousness Machine Learning |
topic |
Autoencoders Dynamics Consciousness Machine Learning |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider the problem of encoding pairwise correlations between coupled dynamical systems in a low-dimensional latent space based on few distinct observations. We use variational autoencoders (VAEs) to embed temporal correlations between coupled nonlinear oscillators that model brain states in the wake-sleep cycle into a two-dimensional manifold. Training a VAE with samples generated using two different parameter combinations results in an embedding that encodes the repertoire of collective dynamics, as well as the topology of the underlying connectivity network. We first follow this approach to infer the trajectory of brain states measured from wakefulness to deep sleep from the two end points of this trajectory; then, we show that the same architecture was capable of representing the pairwise correlations of generic Landau-Stuart oscillators coupled by complex network topology. Fil: Perl, Yonatan Sanz. Universidad de San Andrés; Argentina. Universitat Pompeu Fabra; España. Universidad de Buenos Aires; Argentina Fil: Bocaccio, Hernán. Universidad de Buenos Aires; Argentina Fil: Pérez Ipiña, Ignacio. Universidad de Buenos Aires; Argentina Fil: Zamberlán, Federico. Universidad de Buenos Aires; Argentina Fil: Piccinini, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Laufs, Helmut. Christian-Albrechts-University Kiel; Alemania Fil: Kringelbach, Morten. University of Oxford; Reino Unido Fil: Deco, Gustavo. Universitat Pompeu Fabra; España Fil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina |
description |
We consider the problem of encoding pairwise correlations between coupled dynamical systems in a low-dimensional latent space based on few distinct observations. We use variational autoencoders (VAEs) to embed temporal correlations between coupled nonlinear oscillators that model brain states in the wake-sleep cycle into a two-dimensional manifold. Training a VAE with samples generated using two different parameter combinations results in an embedding that encodes the repertoire of collective dynamics, as well as the topology of the underlying connectivity network. We first follow this approach to infer the trajectory of brain states measured from wakefulness to deep sleep from the two end points of this trajectory; then, we show that the same architecture was capable of representing the pairwise correlations of generic Landau-Stuart oscillators coupled by complex network topology. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/146026 Perl, Yonatan Sanz; Bocaccio, Hernán; Pérez Ipiña, Ignacio; Zamberlán, Federico; Piccinini, Juan Ignacio; et al.; Generative Embeddings of Brain Collective Dynamics Using Variational Autoencoders; American Physical Society; Physical Review Letters; 125; 23; 12-2020; 1-6 0031-9007 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/146026 |
identifier_str_mv |
Perl, Yonatan Sanz; Bocaccio, Hernán; Pérez Ipiña, Ignacio; Zamberlán, Federico; Piccinini, Juan Ignacio; et al.; Generative Embeddings of Brain Collective Dynamics Using Variational Autoencoders; American Physical Society; Physical Review Letters; 125; 23; 12-2020; 1-6 0031-9007 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevLett.125.238101 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.238101 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981365100838912 |
score |
12.48226 |