Modal operators for meet-complemented lattices
- Autores
- Castiglioni, José Luis; Ertola Biraben, Rodolfo Cristian
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Weinvestigate some modal operators of necessity and possibility that form an adjoint pair in the context of meet-complemented lattices. We prove that they form an equational class and we study the modalities, i.e. the finite sequences of unary operators. We proceed in stages, first considering the not necessarily distributive case and also considering the case with the algebraic version of the 4 axiom in modal logic. We compare our operators with other operators in the literature, to wit, the maximum Boolean below and operations defined using the dual of the meet-complement.
Fil: Castiglioni, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Cidade Universitária; Brasil
Fil: Ertola Biraben, Rodolfo Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Cidade Universitária; Brasil - Materia
-
Meet-Complemented Lattices
Modal Operators
Necessity
Non-Distributive Lattices
Possibility
Univocally Defined Operations - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/49715
Ver los metadatos del registro completo
id |
CONICETDig_0e207d024cb456cfe4c3d69ed3b18ac8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/49715 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Modal operators for meet-complemented latticesCastiglioni, José LuisErtola Biraben, Rodolfo CristianMeet-Complemented LatticesModal OperatorsNecessityNon-Distributive LatticesPossibilityUnivocally Defined Operationshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Weinvestigate some modal operators of necessity and possibility that form an adjoint pair in the context of meet-complemented lattices. We prove that they form an equational class and we study the modalities, i.e. the finite sequences of unary operators. We proceed in stages, first considering the not necessarily distributive case and also considering the case with the algebraic version of the 4 axiom in modal logic. We compare our operators with other operators in the literature, to wit, the maximum Boolean below and operations defined using the dual of the meet-complement.Fil: Castiglioni, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Cidade Universitária; BrasilFil: Ertola Biraben, Rodolfo Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Cidade Universitária; BrasilOxford University Press2017-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/49715Castiglioni, José Luis; Ertola Biraben, Rodolfo Cristian; Modal operators for meet-complemented lattices; Oxford University Press; Logic Journal of the IGPL (print); 25; 4; 8-2017; 465-4951367-0751CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1093/jigpal/jzx011info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/jigpal/article-abstract/25/4/465/3896873info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:38Zoai:ri.conicet.gov.ar:11336/49715instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:38.443CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Modal operators for meet-complemented lattices |
title |
Modal operators for meet-complemented lattices |
spellingShingle |
Modal operators for meet-complemented lattices Castiglioni, José Luis Meet-Complemented Lattices Modal Operators Necessity Non-Distributive Lattices Possibility Univocally Defined Operations |
title_short |
Modal operators for meet-complemented lattices |
title_full |
Modal operators for meet-complemented lattices |
title_fullStr |
Modal operators for meet-complemented lattices |
title_full_unstemmed |
Modal operators for meet-complemented lattices |
title_sort |
Modal operators for meet-complemented lattices |
dc.creator.none.fl_str_mv |
Castiglioni, José Luis Ertola Biraben, Rodolfo Cristian |
author |
Castiglioni, José Luis |
author_facet |
Castiglioni, José Luis Ertola Biraben, Rodolfo Cristian |
author_role |
author |
author2 |
Ertola Biraben, Rodolfo Cristian |
author2_role |
author |
dc.subject.none.fl_str_mv |
Meet-Complemented Lattices Modal Operators Necessity Non-Distributive Lattices Possibility Univocally Defined Operations |
topic |
Meet-Complemented Lattices Modal Operators Necessity Non-Distributive Lattices Possibility Univocally Defined Operations |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Weinvestigate some modal operators of necessity and possibility that form an adjoint pair in the context of meet-complemented lattices. We prove that they form an equational class and we study the modalities, i.e. the finite sequences of unary operators. We proceed in stages, first considering the not necessarily distributive case and also considering the case with the algebraic version of the 4 axiom in modal logic. We compare our operators with other operators in the literature, to wit, the maximum Boolean below and operations defined using the dual of the meet-complement. Fil: Castiglioni, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Cidade Universitária; Brasil Fil: Ertola Biraben, Rodolfo Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Cidade Universitária; Brasil |
description |
Weinvestigate some modal operators of necessity and possibility that form an adjoint pair in the context of meet-complemented lattices. We prove that they form an equational class and we study the modalities, i.e. the finite sequences of unary operators. We proceed in stages, first considering the not necessarily distributive case and also considering the case with the algebraic version of the 4 axiom in modal logic. We compare our operators with other operators in the literature, to wit, the maximum Boolean below and operations defined using the dual of the meet-complement. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/49715 Castiglioni, José Luis; Ertola Biraben, Rodolfo Cristian; Modal operators for meet-complemented lattices; Oxford University Press; Logic Journal of the IGPL (print); 25; 4; 8-2017; 465-495 1367-0751 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/49715 |
identifier_str_mv |
Castiglioni, José Luis; Ertola Biraben, Rodolfo Cristian; Modal operators for meet-complemented lattices; Oxford University Press; Logic Journal of the IGPL (print); 25; 4; 8-2017; 465-495 1367-0751 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1093/jigpal/jzx011 info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/jigpal/article-abstract/25/4/465/3896873 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613073209393152 |
score |
13.070432 |