Improving dimension estimates for Furstenberg-type sets
- Autores
- Molter, Ursula Maria; Rela, Ezequiel
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we study the problem of estimating the generalized Hausdorff dimension of Furstenberg sets in the plane. For α ∈ (0, 1], a set F in the plane is said to be an α-Furstenberg set if for each direction e there is a line segment ℓe in the direction of e for which dimH (ℓe ∩ F) ≥ α. It is well known that dimH (F) ≥ max {2 α, α + frac(1, 2)}, and it is also known that these sets can have zero measure at their critical dimension. By looking at general Hausdorff measures Hh defined for doubling functions, that need not be power laws, we obtain finer estimates for the size of the more general h-Furstenberg sets. Further, this approach allow us to sharpen the known bounds on the dimension of classical Furstenberg sets. The main difficulty we had to overcome, was that if Hh (F) = 0, there always exists g ≺ h such that Hg (F) = 0 (here ≺ refers to the natural ordering on general Hausdorff dimension functions). Hence, in order to estimate the measure of general Furstenberg sets, we have to consider dimension functions that are a true step down from the critical one. We provide rather precise estimates on the size of this step and by doing so, we can include a family of zero dimensional Furstenberg sets associated to dimension functions that grow faster than any power function at zero. With some additional growth conditions on these zero dimensional functions, we extend the known inequalities to include the endpoint α = 0.
Fil: Molter, Ursula Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rela, Ezequiel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
DIMENSION FUNCTION
FURSTENBERG SETS
HAUSDORFF DIMENSION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/98701
Ver los metadatos del registro completo
id |
CONICETDig_49d0910d5a55a9e1247657315b851807 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/98701 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Improving dimension estimates for Furstenberg-type setsMolter, Ursula MariaRela, EzequielDIMENSION FUNCTIONFURSTENBERG SETSHAUSDORFF DIMENSIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we study the problem of estimating the generalized Hausdorff dimension of Furstenberg sets in the plane. For α ∈ (0, 1], a set F in the plane is said to be an α-Furstenberg set if for each direction e there is a line segment ℓe in the direction of e for which dimH (ℓe ∩ F) ≥ α. It is well known that dimH (F) ≥ max {2 α, α + frac(1, 2)}, and it is also known that these sets can have zero measure at their critical dimension. By looking at general Hausdorff measures Hh defined for doubling functions, that need not be power laws, we obtain finer estimates for the size of the more general h-Furstenberg sets. Further, this approach allow us to sharpen the known bounds on the dimension of classical Furstenberg sets. The main difficulty we had to overcome, was that if Hh (F) = 0, there always exists g ≺ h such that Hg (F) = 0 (here ≺ refers to the natural ordering on general Hausdorff dimension functions). Hence, in order to estimate the measure of general Furstenberg sets, we have to consider dimension functions that are a true step down from the critical one. We provide rather precise estimates on the size of this step and by doing so, we can include a family of zero dimensional Furstenberg sets associated to dimension functions that grow faster than any power function at zero. With some additional growth conditions on these zero dimensional functions, we extend the known inequalities to include the endpoint α = 0.Fil: Molter, Ursula Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rela, Ezequiel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAcademic Press Inc Elsevier Science2010-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98701Molter, Ursula Maria; Rela, Ezequiel; Improving dimension estimates for Furstenberg-type sets; Academic Press Inc Elsevier Science; Advances in Mathematics; 223; 2; 1-2010; 672-6880001-8708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870809002667info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2009.08.019info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:16:32Zoai:ri.conicet.gov.ar:11336/98701instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:16:32.248CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Improving dimension estimates for Furstenberg-type sets |
title |
Improving dimension estimates for Furstenberg-type sets |
spellingShingle |
Improving dimension estimates for Furstenberg-type sets Molter, Ursula Maria DIMENSION FUNCTION FURSTENBERG SETS HAUSDORFF DIMENSION |
title_short |
Improving dimension estimates for Furstenberg-type sets |
title_full |
Improving dimension estimates for Furstenberg-type sets |
title_fullStr |
Improving dimension estimates for Furstenberg-type sets |
title_full_unstemmed |
Improving dimension estimates for Furstenberg-type sets |
title_sort |
Improving dimension estimates for Furstenberg-type sets |
dc.creator.none.fl_str_mv |
Molter, Ursula Maria Rela, Ezequiel |
author |
Molter, Ursula Maria |
author_facet |
Molter, Ursula Maria Rela, Ezequiel |
author_role |
author |
author2 |
Rela, Ezequiel |
author2_role |
author |
dc.subject.none.fl_str_mv |
DIMENSION FUNCTION FURSTENBERG SETS HAUSDORFF DIMENSION |
topic |
DIMENSION FUNCTION FURSTENBERG SETS HAUSDORFF DIMENSION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we study the problem of estimating the generalized Hausdorff dimension of Furstenberg sets in the plane. For α ∈ (0, 1], a set F in the plane is said to be an α-Furstenberg set if for each direction e there is a line segment ℓe in the direction of e for which dimH (ℓe ∩ F) ≥ α. It is well known that dimH (F) ≥ max {2 α, α + frac(1, 2)}, and it is also known that these sets can have zero measure at their critical dimension. By looking at general Hausdorff measures Hh defined for doubling functions, that need not be power laws, we obtain finer estimates for the size of the more general h-Furstenberg sets. Further, this approach allow us to sharpen the known bounds on the dimension of classical Furstenberg sets. The main difficulty we had to overcome, was that if Hh (F) = 0, there always exists g ≺ h such that Hg (F) = 0 (here ≺ refers to the natural ordering on general Hausdorff dimension functions). Hence, in order to estimate the measure of general Furstenberg sets, we have to consider dimension functions that are a true step down from the critical one. We provide rather precise estimates on the size of this step and by doing so, we can include a family of zero dimensional Furstenberg sets associated to dimension functions that grow faster than any power function at zero. With some additional growth conditions on these zero dimensional functions, we extend the known inequalities to include the endpoint α = 0. Fil: Molter, Ursula Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Rela, Ezequiel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
In this paper we study the problem of estimating the generalized Hausdorff dimension of Furstenberg sets in the plane. For α ∈ (0, 1], a set F in the plane is said to be an α-Furstenberg set if for each direction e there is a line segment ℓe in the direction of e for which dimH (ℓe ∩ F) ≥ α. It is well known that dimH (F) ≥ max {2 α, α + frac(1, 2)}, and it is also known that these sets can have zero measure at their critical dimension. By looking at general Hausdorff measures Hh defined for doubling functions, that need not be power laws, we obtain finer estimates for the size of the more general h-Furstenberg sets. Further, this approach allow us to sharpen the known bounds on the dimension of classical Furstenberg sets. The main difficulty we had to overcome, was that if Hh (F) = 0, there always exists g ≺ h such that Hg (F) = 0 (here ≺ refers to the natural ordering on general Hausdorff dimension functions). Hence, in order to estimate the measure of general Furstenberg sets, we have to consider dimension functions that are a true step down from the critical one. We provide rather precise estimates on the size of this step and by doing so, we can include a family of zero dimensional Furstenberg sets associated to dimension functions that grow faster than any power function at zero. With some additional growth conditions on these zero dimensional functions, we extend the known inequalities to include the endpoint α = 0. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/98701 Molter, Ursula Maria; Rela, Ezequiel; Improving dimension estimates for Furstenberg-type sets; Academic Press Inc Elsevier Science; Advances in Mathematics; 223; 2; 1-2010; 672-688 0001-8708 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/98701 |
identifier_str_mv |
Molter, Ursula Maria; Rela, Ezequiel; Improving dimension estimates for Furstenberg-type sets; Academic Press Inc Elsevier Science; Advances in Mathematics; 223; 2; 1-2010; 672-688 0001-8708 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870809002667 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2009.08.019 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083313766236160 |
score |
13.22299 |