Tannaka theory over Sup-Lattices and Descent for Topoi

Autores
Dubuc, Eduardo Julio; Szyld, Martín
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider locales B as algebras in the tensor category s` of sup-lattices. We show the equivalence between the Joyal-Tierney descent theorem for open localic surjections shB q −→ E in Galois theory and a Tannakian recognition theorem over s` for the s`-functor Rel(E) Rel(q ∗ ) −→ Rel(shB) ∼= (B-Mod)0 into the s`-category of discrete B-modules. Thus, a new Tannaka recognition theorem is obtained, essentially different from those known so far. This equivalence follows from two independent results. We develop an explicit construction of the localic groupoid G associated by Joyal-Tierney to q, and do an exhaustive comparison with the Deligne Tannakian construction of the Hopf algebroid L associated to Rel(q ∗ ), and show they are isomorphic, that is, L ∼= O(G). On the other hand, we show that the s`-category of relations of the classifying topos of any localic groupoid G, is equivalent to the s`-category of L-comodules with discrete subjacent B-module, where L = O(G). We are forced to work over an arbitrary base topos because, contrary to the neutral case which can be developed completely over Sets, here change of base techniques are unavoidable.
Fil: Dubuc, Eduardo Julio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Szyld, Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Tannaka
Galois
Sup-Lattice
Locale
Topos
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/19886

id CONICETDig_84dd68b1fc4ac6198910a41b498c9d1e
oai_identifier_str oai:ri.conicet.gov.ar:11336/19886
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Tannaka theory over Sup-Lattices and Descent for TopoiDubuc, Eduardo JulioSzyld, MartínTannakaGaloisSup-LatticeLocaleToposhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider locales B as algebras in the tensor category s` of sup-lattices. We show the equivalence between the Joyal-Tierney descent theorem for open localic surjections shB q −→ E in Galois theory and a Tannakian recognition theorem over s` for the s`-functor Rel(E) Rel(q ∗ ) −→ Rel(shB) ∼= (B-Mod)0 into the s`-category of discrete B-modules. Thus, a new Tannaka recognition theorem is obtained, essentially different from those known so far. This equivalence follows from two independent results. We develop an explicit construction of the localic groupoid G associated by Joyal-Tierney to q, and do an exhaustive comparison with the Deligne Tannakian construction of the Hopf algebroid L associated to Rel(q ∗ ), and show they are isomorphic, that is, L ∼= O(G). On the other hand, we show that the s`-category of relations of the classifying topos of any localic groupoid G, is equivalent to the s`-category of L-comodules with discrete subjacent B-module, where L = O(G). We are forced to work over an arbitrary base topos because, contrary to the neutral case which can be developed completely over Sets, here change of base techniques are unavoidable.Fil: Dubuc, Eduardo Julio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Szyld, Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaMount Allison University2016info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19886Dubuc, Eduardo Julio; Szyld, Martín; Tannaka theory over Sup-Lattices and Descent for Topoi; Mount Allison University; Theory And Applications Of Categories; 31; 31; 2016; 852-9061201-561XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1510.01775info:eu-repo/semantics/altIdentifier/url/http://www.tac.mta.ca/tac/volumes/31/31/31-31abs.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:36:58Zoai:ri.conicet.gov.ar:11336/19886instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:36:58.945CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Tannaka theory over Sup-Lattices and Descent for Topoi
title Tannaka theory over Sup-Lattices and Descent for Topoi
spellingShingle Tannaka theory over Sup-Lattices and Descent for Topoi
Dubuc, Eduardo Julio
Tannaka
Galois
Sup-Lattice
Locale
Topos
title_short Tannaka theory over Sup-Lattices and Descent for Topoi
title_full Tannaka theory over Sup-Lattices and Descent for Topoi
title_fullStr Tannaka theory over Sup-Lattices and Descent for Topoi
title_full_unstemmed Tannaka theory over Sup-Lattices and Descent for Topoi
title_sort Tannaka theory over Sup-Lattices and Descent for Topoi
dc.creator.none.fl_str_mv Dubuc, Eduardo Julio
Szyld, Martín
author Dubuc, Eduardo Julio
author_facet Dubuc, Eduardo Julio
Szyld, Martín
author_role author
author2 Szyld, Martín
author2_role author
dc.subject.none.fl_str_mv Tannaka
Galois
Sup-Lattice
Locale
Topos
topic Tannaka
Galois
Sup-Lattice
Locale
Topos
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We consider locales B as algebras in the tensor category s` of sup-lattices. We show the equivalence between the Joyal-Tierney descent theorem for open localic surjections shB q −→ E in Galois theory and a Tannakian recognition theorem over s` for the s`-functor Rel(E) Rel(q ∗ ) −→ Rel(shB) ∼= (B-Mod)0 into the s`-category of discrete B-modules. Thus, a new Tannaka recognition theorem is obtained, essentially different from those known so far. This equivalence follows from two independent results. We develop an explicit construction of the localic groupoid G associated by Joyal-Tierney to q, and do an exhaustive comparison with the Deligne Tannakian construction of the Hopf algebroid L associated to Rel(q ∗ ), and show they are isomorphic, that is, L ∼= O(G). On the other hand, we show that the s`-category of relations of the classifying topos of any localic groupoid G, is equivalent to the s`-category of L-comodules with discrete subjacent B-module, where L = O(G). We are forced to work over an arbitrary base topos because, contrary to the neutral case which can be developed completely over Sets, here change of base techniques are unavoidable.
Fil: Dubuc, Eduardo Julio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Szyld, Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We consider locales B as algebras in the tensor category s` of sup-lattices. We show the equivalence between the Joyal-Tierney descent theorem for open localic surjections shB q −→ E in Galois theory and a Tannakian recognition theorem over s` for the s`-functor Rel(E) Rel(q ∗ ) −→ Rel(shB) ∼= (B-Mod)0 into the s`-category of discrete B-modules. Thus, a new Tannaka recognition theorem is obtained, essentially different from those known so far. This equivalence follows from two independent results. We develop an explicit construction of the localic groupoid G associated by Joyal-Tierney to q, and do an exhaustive comparison with the Deligne Tannakian construction of the Hopf algebroid L associated to Rel(q ∗ ), and show they are isomorphic, that is, L ∼= O(G). On the other hand, we show that the s`-category of relations of the classifying topos of any localic groupoid G, is equivalent to the s`-category of L-comodules with discrete subjacent B-module, where L = O(G). We are forced to work over an arbitrary base topos because, contrary to the neutral case which can be developed completely over Sets, here change of base techniques are unavoidable.
publishDate 2016
dc.date.none.fl_str_mv 2016
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/19886
Dubuc, Eduardo Julio; Szyld, Martín; Tannaka theory over Sup-Lattices and Descent for Topoi; Mount Allison University; Theory And Applications Of Categories; 31; 31; 2016; 852-906
1201-561X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/19886
identifier_str_mv Dubuc, Eduardo Julio; Szyld, Martín; Tannaka theory over Sup-Lattices and Descent for Topoi; Mount Allison University; Theory And Applications Of Categories; 31; 31; 2016; 852-906
1201-561X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1510.01775
info:eu-repo/semantics/altIdentifier/url/http://www.tac.mta.ca/tac/volumes/31/31/31-31abs.html
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Mount Allison University
publisher.none.fl_str_mv Mount Allison University
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083491608920064
score 13.22299