Tannaka theory over Sup-Lattices and Descent for Topoi
- Autores
- Dubuc, Eduardo Julio; Szyld, Martín
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider locales B as algebras in the tensor category s` of sup-lattices. We show the equivalence between the Joyal-Tierney descent theorem for open localic surjections shB q −→ E in Galois theory and a Tannakian recognition theorem over s` for the s`-functor Rel(E) Rel(q ∗ ) −→ Rel(shB) ∼= (B-Mod)0 into the s`-category of discrete B-modules. Thus, a new Tannaka recognition theorem is obtained, essentially different from those known so far. This equivalence follows from two independent results. We develop an explicit construction of the localic groupoid G associated by Joyal-Tierney to q, and do an exhaustive comparison with the Deligne Tannakian construction of the Hopf algebroid L associated to Rel(q ∗ ), and show they are isomorphic, that is, L ∼= O(G). On the other hand, we show that the s`-category of relations of the classifying topos of any localic groupoid G, is equivalent to the s`-category of L-comodules with discrete subjacent B-module, where L = O(G). We are forced to work over an arbitrary base topos because, contrary to the neutral case which can be developed completely over Sets, here change of base techniques are unavoidable.
Fil: Dubuc, Eduardo Julio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Szyld, Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Tannaka
Galois
Sup-Lattice
Locale
Topos - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19886
Ver los metadatos del registro completo
id |
CONICETDig_84dd68b1fc4ac6198910a41b498c9d1e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19886 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Tannaka theory over Sup-Lattices and Descent for TopoiDubuc, Eduardo JulioSzyld, MartínTannakaGaloisSup-LatticeLocaleToposhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider locales B as algebras in the tensor category s` of sup-lattices. We show the equivalence between the Joyal-Tierney descent theorem for open localic surjections shB q −→ E in Galois theory and a Tannakian recognition theorem over s` for the s`-functor Rel(E) Rel(q ∗ ) −→ Rel(shB) ∼= (B-Mod)0 into the s`-category of discrete B-modules. Thus, a new Tannaka recognition theorem is obtained, essentially different from those known so far. This equivalence follows from two independent results. We develop an explicit construction of the localic groupoid G associated by Joyal-Tierney to q, and do an exhaustive comparison with the Deligne Tannakian construction of the Hopf algebroid L associated to Rel(q ∗ ), and show they are isomorphic, that is, L ∼= O(G). On the other hand, we show that the s`-category of relations of the classifying topos of any localic groupoid G, is equivalent to the s`-category of L-comodules with discrete subjacent B-module, where L = O(G). We are forced to work over an arbitrary base topos because, contrary to the neutral case which can be developed completely over Sets, here change of base techniques are unavoidable.Fil: Dubuc, Eduardo Julio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Szyld, Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaMount Allison University2016info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19886Dubuc, Eduardo Julio; Szyld, Martín; Tannaka theory over Sup-Lattices and Descent for Topoi; Mount Allison University; Theory And Applications Of Categories; 31; 31; 2016; 852-9061201-561XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1510.01775info:eu-repo/semantics/altIdentifier/url/http://www.tac.mta.ca/tac/volumes/31/31/31-31abs.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:36:58Zoai:ri.conicet.gov.ar:11336/19886instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:36:58.945CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Tannaka theory over Sup-Lattices and Descent for Topoi |
title |
Tannaka theory over Sup-Lattices and Descent for Topoi |
spellingShingle |
Tannaka theory over Sup-Lattices and Descent for Topoi Dubuc, Eduardo Julio Tannaka Galois Sup-Lattice Locale Topos |
title_short |
Tannaka theory over Sup-Lattices and Descent for Topoi |
title_full |
Tannaka theory over Sup-Lattices and Descent for Topoi |
title_fullStr |
Tannaka theory over Sup-Lattices and Descent for Topoi |
title_full_unstemmed |
Tannaka theory over Sup-Lattices and Descent for Topoi |
title_sort |
Tannaka theory over Sup-Lattices and Descent for Topoi |
dc.creator.none.fl_str_mv |
Dubuc, Eduardo Julio Szyld, Martín |
author |
Dubuc, Eduardo Julio |
author_facet |
Dubuc, Eduardo Julio Szyld, Martín |
author_role |
author |
author2 |
Szyld, Martín |
author2_role |
author |
dc.subject.none.fl_str_mv |
Tannaka Galois Sup-Lattice Locale Topos |
topic |
Tannaka Galois Sup-Lattice Locale Topos |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider locales B as algebras in the tensor category s` of sup-lattices. We show the equivalence between the Joyal-Tierney descent theorem for open localic surjections shB q −→ E in Galois theory and a Tannakian recognition theorem over s` for the s`-functor Rel(E) Rel(q ∗ ) −→ Rel(shB) ∼= (B-Mod)0 into the s`-category of discrete B-modules. Thus, a new Tannaka recognition theorem is obtained, essentially different from those known so far. This equivalence follows from two independent results. We develop an explicit construction of the localic groupoid G associated by Joyal-Tierney to q, and do an exhaustive comparison with the Deligne Tannakian construction of the Hopf algebroid L associated to Rel(q ∗ ), and show they are isomorphic, that is, L ∼= O(G). On the other hand, we show that the s`-category of relations of the classifying topos of any localic groupoid G, is equivalent to the s`-category of L-comodules with discrete subjacent B-module, where L = O(G). We are forced to work over an arbitrary base topos because, contrary to the neutral case which can be developed completely over Sets, here change of base techniques are unavoidable. Fil: Dubuc, Eduardo Julio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Szyld, Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We consider locales B as algebras in the tensor category s` of sup-lattices. We show the equivalence between the Joyal-Tierney descent theorem for open localic surjections shB q −→ E in Galois theory and a Tannakian recognition theorem over s` for the s`-functor Rel(E) Rel(q ∗ ) −→ Rel(shB) ∼= (B-Mod)0 into the s`-category of discrete B-modules. Thus, a new Tannaka recognition theorem is obtained, essentially different from those known so far. This equivalence follows from two independent results. We develop an explicit construction of the localic groupoid G associated by Joyal-Tierney to q, and do an exhaustive comparison with the Deligne Tannakian construction of the Hopf algebroid L associated to Rel(q ∗ ), and show they are isomorphic, that is, L ∼= O(G). On the other hand, we show that the s`-category of relations of the classifying topos of any localic groupoid G, is equivalent to the s`-category of L-comodules with discrete subjacent B-module, where L = O(G). We are forced to work over an arbitrary base topos because, contrary to the neutral case which can be developed completely over Sets, here change of base techniques are unavoidable. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19886 Dubuc, Eduardo Julio; Szyld, Martín; Tannaka theory over Sup-Lattices and Descent for Topoi; Mount Allison University; Theory And Applications Of Categories; 31; 31; 2016; 852-906 1201-561X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19886 |
identifier_str_mv |
Dubuc, Eduardo Julio; Szyld, Martín; Tannaka theory over Sup-Lattices and Descent for Topoi; Mount Allison University; Theory And Applications Of Categories; 31; 31; 2016; 852-906 1201-561X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1510.01775 info:eu-repo/semantics/altIdentifier/url/http://www.tac.mta.ca/tac/volumes/31/31/31-31abs.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Mount Allison University |
publisher.none.fl_str_mv |
Mount Allison University |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083491608920064 |
score |
13.22299 |