The fundamental progroupoid of a general topos
- Autores
- Dubuc, Eduardo Julio
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- It is well known that the category of covering projections (that is, locally constant objects) of a locally connected topos is equivalent to the classifying topos of a strict progroupoid (or, equivalently, a localic prodiscrete groupoid), the fundamental progroupoid, and that this progroupoid represents first degree cohomology. In this paper we generalize these results to an arbitrary topos. The fundamental progroupoid is now a localic progroupoid, and cannot be replaced by a localic groupoid. The classifying topos is no longer a Galois topos. Not all locally constant objects can be considered as covering projections. The key contribution of this paper is a novel definition of covering projection for a general topos, which coincides with the usual definition when the topos is locally connected. The results in this paper were presented in a talk at the Category Theory Conference, Vancouver, July 2004.
Fil: Dubuc, Eduardo Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
GALOIS TOPOS
FUNDAMENTAL GROUPOID
COVERING PROJECTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/151322
Ver los metadatos del registro completo
id |
CONICETDig_67edd9037f4ad47da7bd02b04046f870 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/151322 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The fundamental progroupoid of a general toposDubuc, Eduardo JulioGALOIS TOPOSFUNDAMENTAL GROUPOIDCOVERING PROJECTIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1It is well known that the category of covering projections (that is, locally constant objects) of a locally connected topos is equivalent to the classifying topos of a strict progroupoid (or, equivalently, a localic prodiscrete groupoid), the fundamental progroupoid, and that this progroupoid represents first degree cohomology. In this paper we generalize these results to an arbitrary topos. The fundamental progroupoid is now a localic progroupoid, and cannot be replaced by a localic groupoid. The classifying topos is no longer a Galois topos. Not all locally constant objects can be considered as covering projections. The key contribution of this paper is a novel definition of covering projection for a general topos, which coincides with the usual definition when the topos is locally connected. The results in this paper were presented in a talk at the Category Theory Conference, Vancouver, July 2004.Fil: Dubuc, Eduardo Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaElsevier Science2008-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/151322Dubuc, Eduardo Julio; The fundamental progroupoid of a general topos; Elsevier Science; Journal Of Pure And Applied Algebra; 212; 11; 11-2008; 2479-24920022-4049CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpaa.2008.03.022info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022404908000728info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/0706.1771info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:00:42Zoai:ri.conicet.gov.ar:11336/151322instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:00:42.77CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The fundamental progroupoid of a general topos |
title |
The fundamental progroupoid of a general topos |
spellingShingle |
The fundamental progroupoid of a general topos Dubuc, Eduardo Julio GALOIS TOPOS FUNDAMENTAL GROUPOID COVERING PROJECTION |
title_short |
The fundamental progroupoid of a general topos |
title_full |
The fundamental progroupoid of a general topos |
title_fullStr |
The fundamental progroupoid of a general topos |
title_full_unstemmed |
The fundamental progroupoid of a general topos |
title_sort |
The fundamental progroupoid of a general topos |
dc.creator.none.fl_str_mv |
Dubuc, Eduardo Julio |
author |
Dubuc, Eduardo Julio |
author_facet |
Dubuc, Eduardo Julio |
author_role |
author |
dc.subject.none.fl_str_mv |
GALOIS TOPOS FUNDAMENTAL GROUPOID COVERING PROJECTION |
topic |
GALOIS TOPOS FUNDAMENTAL GROUPOID COVERING PROJECTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
It is well known that the category of covering projections (that is, locally constant objects) of a locally connected topos is equivalent to the classifying topos of a strict progroupoid (or, equivalently, a localic prodiscrete groupoid), the fundamental progroupoid, and that this progroupoid represents first degree cohomology. In this paper we generalize these results to an arbitrary topos. The fundamental progroupoid is now a localic progroupoid, and cannot be replaced by a localic groupoid. The classifying topos is no longer a Galois topos. Not all locally constant objects can be considered as covering projections. The key contribution of this paper is a novel definition of covering projection for a general topos, which coincides with the usual definition when the topos is locally connected. The results in this paper were presented in a talk at the Category Theory Conference, Vancouver, July 2004. Fil: Dubuc, Eduardo Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
It is well known that the category of covering projections (that is, locally constant objects) of a locally connected topos is equivalent to the classifying topos of a strict progroupoid (or, equivalently, a localic prodiscrete groupoid), the fundamental progroupoid, and that this progroupoid represents first degree cohomology. In this paper we generalize these results to an arbitrary topos. The fundamental progroupoid is now a localic progroupoid, and cannot be replaced by a localic groupoid. The classifying topos is no longer a Galois topos. Not all locally constant objects can be considered as covering projections. The key contribution of this paper is a novel definition of covering projection for a general topos, which coincides with the usual definition when the topos is locally connected. The results in this paper were presented in a talk at the Category Theory Conference, Vancouver, July 2004. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/151322 Dubuc, Eduardo Julio; The fundamental progroupoid of a general topos; Elsevier Science; Journal Of Pure And Applied Algebra; 212; 11; 11-2008; 2479-2492 0022-4049 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/151322 |
identifier_str_mv |
Dubuc, Eduardo Julio; The fundamental progroupoid of a general topos; Elsevier Science; Journal Of Pure And Applied Algebra; 212; 11; 11-2008; 2479-2492 0022-4049 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpaa.2008.03.022 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022404908000728 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/0706.1771 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083146383097856 |
score |
13.22299 |