The fundamental progroupoid of a general topos

Autores
Dubuc, Eduardo Julio
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
It is well known that the category of covering projections (that is, locally constant objects) of a locally connected topos is equivalent to the classifying topos of a strict progroupoid (or, equivalently, a localic prodiscrete groupoid), the fundamental progroupoid, and that this progroupoid represents first degree cohomology. In this paper we generalize these results to an arbitrary topos. The fundamental progroupoid is now a localic progroupoid, and cannot be replaced by a localic groupoid. The classifying topos is no longer a Galois topos. Not all locally constant objects can be considered as covering projections. The key contribution of this paper is a novel definition of covering projection for a general topos, which coincides with the usual definition when the topos is locally connected. The results in this paper were presented in a talk at the Category Theory Conference, Vancouver, July 2004.
Fil: Dubuc, Eduardo Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
GALOIS TOPOS
FUNDAMENTAL GROUPOID
COVERING PROJECTION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/151322

id CONICETDig_67edd9037f4ad47da7bd02b04046f870
oai_identifier_str oai:ri.conicet.gov.ar:11336/151322
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The fundamental progroupoid of a general toposDubuc, Eduardo JulioGALOIS TOPOSFUNDAMENTAL GROUPOIDCOVERING PROJECTIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1It is well known that the category of covering projections (that is, locally constant objects) of a locally connected topos is equivalent to the classifying topos of a strict progroupoid (or, equivalently, a localic prodiscrete groupoid), the fundamental progroupoid, and that this progroupoid represents first degree cohomology. In this paper we generalize these results to an arbitrary topos. The fundamental progroupoid is now a localic progroupoid, and cannot be replaced by a localic groupoid. The classifying topos is no longer a Galois topos. Not all locally constant objects can be considered as covering projections. The key contribution of this paper is a novel definition of covering projection for a general topos, which coincides with the usual definition when the topos is locally connected. The results in this paper were presented in a talk at the Category Theory Conference, Vancouver, July 2004.Fil: Dubuc, Eduardo Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaElsevier Science2008-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/151322Dubuc, Eduardo Julio; The fundamental progroupoid of a general topos; Elsevier Science; Journal Of Pure And Applied Algebra; 212; 11; 11-2008; 2479-24920022-4049CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpaa.2008.03.022info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022404908000728info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/0706.1771info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:00:42Zoai:ri.conicet.gov.ar:11336/151322instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:00:42.77CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The fundamental progroupoid of a general topos
title The fundamental progroupoid of a general topos
spellingShingle The fundamental progroupoid of a general topos
Dubuc, Eduardo Julio
GALOIS TOPOS
FUNDAMENTAL GROUPOID
COVERING PROJECTION
title_short The fundamental progroupoid of a general topos
title_full The fundamental progroupoid of a general topos
title_fullStr The fundamental progroupoid of a general topos
title_full_unstemmed The fundamental progroupoid of a general topos
title_sort The fundamental progroupoid of a general topos
dc.creator.none.fl_str_mv Dubuc, Eduardo Julio
author Dubuc, Eduardo Julio
author_facet Dubuc, Eduardo Julio
author_role author
dc.subject.none.fl_str_mv GALOIS TOPOS
FUNDAMENTAL GROUPOID
COVERING PROJECTION
topic GALOIS TOPOS
FUNDAMENTAL GROUPOID
COVERING PROJECTION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv It is well known that the category of covering projections (that is, locally constant objects) of a locally connected topos is equivalent to the classifying topos of a strict progroupoid (or, equivalently, a localic prodiscrete groupoid), the fundamental progroupoid, and that this progroupoid represents first degree cohomology. In this paper we generalize these results to an arbitrary topos. The fundamental progroupoid is now a localic progroupoid, and cannot be replaced by a localic groupoid. The classifying topos is no longer a Galois topos. Not all locally constant objects can be considered as covering projections. The key contribution of this paper is a novel definition of covering projection for a general topos, which coincides with the usual definition when the topos is locally connected. The results in this paper were presented in a talk at the Category Theory Conference, Vancouver, July 2004.
Fil: Dubuc, Eduardo Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description It is well known that the category of covering projections (that is, locally constant objects) of a locally connected topos is equivalent to the classifying topos of a strict progroupoid (or, equivalently, a localic prodiscrete groupoid), the fundamental progroupoid, and that this progroupoid represents first degree cohomology. In this paper we generalize these results to an arbitrary topos. The fundamental progroupoid is now a localic progroupoid, and cannot be replaced by a localic groupoid. The classifying topos is no longer a Galois topos. Not all locally constant objects can be considered as covering projections. The key contribution of this paper is a novel definition of covering projection for a general topos, which coincides with the usual definition when the topos is locally connected. The results in this paper were presented in a talk at the Category Theory Conference, Vancouver, July 2004.
publishDate 2008
dc.date.none.fl_str_mv 2008-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/151322
Dubuc, Eduardo Julio; The fundamental progroupoid of a general topos; Elsevier Science; Journal Of Pure And Applied Algebra; 212; 11; 11-2008; 2479-2492
0022-4049
CONICET Digital
CONICET
url http://hdl.handle.net/11336/151322
identifier_str_mv Dubuc, Eduardo Julio; The fundamental progroupoid of a general topos; Elsevier Science; Journal Of Pure And Applied Algebra; 212; 11; 11-2008; 2479-2492
0022-4049
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpaa.2008.03.022
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022404908000728
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/0706.1771
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083146383097856
score 13.22299