A construction of 2-cofiltered bilimits of topoi
- Autores
- Dubuc, Eduardo J.; Yuhjtman, Sergio Andrés
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We show the existence of bilimits of 2-cofiltered diagrams of topoi, generalizing the construction of cofiltered bilimits developed in [2]. For any given such diagram represented by any 2-cofiltered diagram of small sites with finite limits, we construct a small site for the bilimit topos (there is no loss of generality since we also prove that any such diagram can be so represented). This is done by taking the 2-filtered bicolimit of the underlying categories and inverse image functors. We use the construction of this bicolimit developed in [4], where it is proved that if the categories in the diagram have finite limits and the transition functors are exact, then the bicolimit category has finite limits and the pseudocone functors are exact. An application of our result here is the fact that every Galois topos has points [3].
Nous montrons l’existence des bilimites de diagrammes 2-cofiltr´ees de topos, g´en´eralisant la construction de bilimites cofiltr´ees d´evelopp´ee dans [2]. Nous montrons qu’un tel diagramme peut ˆetre repr´esent´e par un diagramme 2-cofiltr´e de petits sites avec limites finies, and nous construisons un petit site pour le topos bilimite. Nous faisons ceci en consid´erant le 2-filtr´e bicolimite des cat´egories sous-jacentes et leurs foncteurs image inverse. Nous appliquons la construction de cette bicolimite, d´evelopp´ee dans [4], ou` il est montr´e que si les cat´egories dans un diagramme ont des limites finies et les foncteurs de transition sont exacts, alors la cat´egorie bicolimite a aussi des limites finies et les foncteurs du pseudocone sont exacts. Une application de notre r´esultat est que tout topos de Galois a des points [3].
Fil: Yuhjtman, Sergio Andrés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
Category Theory
Grothendieck Topos
2-Cofiltered Bilimit - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/93747
Ver los metadatos del registro completo
id |
CONICETDig_0266fd0664dc3f4a37169aa7aff165e3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/93747 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A construction of 2-cofiltered bilimits of topoiDubuc, Eduardo J.Yuhjtman, Sergio AndrésCategory TheoryGrothendieck Topos2-Cofiltered Bilimithttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We show the existence of bilimits of 2-cofiltered diagrams of topoi, generalizing the construction of cofiltered bilimits developed in [2]. For any given such diagram represented by any 2-cofiltered diagram of small sites with finite limits, we construct a small site for the bilimit topos (there is no loss of generality since we also prove that any such diagram can be so represented). This is done by taking the 2-filtered bicolimit of the underlying categories and inverse image functors. We use the construction of this bicolimit developed in [4], where it is proved that if the categories in the diagram have finite limits and the transition functors are exact, then the bicolimit category has finite limits and the pseudocone functors are exact. An application of our result here is the fact that every Galois topos has points [3].Nous montrons l’existence des bilimites de diagrammes 2-cofiltr´ees de topos, g´en´eralisant la construction de bilimites cofiltr´ees d´evelopp´ee dans [2]. Nous montrons qu’un tel diagramme peut ˆetre repr´esent´e par un diagramme 2-cofiltr´e de petits sites avec limites finies, and nous construisons un petit site pour le topos bilimite. Nous faisons ceci en consid´erant le 2-filtr´e bicolimite des cat´egories sous-jacentes et leurs foncteurs image inverse. Nous appliquons la construction de cette bicolimite, d´evelopp´ee dans [4], ou` il est montr´e que si les cat´egories dans un diagramme ont des limites finies et les foncteurs de transition sont exacts, alors la cat´egorie bicolimite a aussi des limites finies et les foncteurs du pseudocone sont exacts. Une application de notre r´esultat est que tout topos de Galois a des points [3].Fil: Yuhjtman, Sergio Andrés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaEhresman, Andree2011-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/93747Dubuc, Eduardo J.; Yuhjtman, Sergio Andrés; A construction of 2-cofiltered bilimits of topoi; Ehresman, Andree; Cahiers de Topologie Et Geometrie Differentielle Categoriques; 52; 4; 10-2011; 242-2520008-0004CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://cahierstgdc.com/index.php/volumes/volume-lii-2011/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:39:26Zoai:ri.conicet.gov.ar:11336/93747instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:39:27.112CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A construction of 2-cofiltered bilimits of topoi |
title |
A construction of 2-cofiltered bilimits of topoi |
spellingShingle |
A construction of 2-cofiltered bilimits of topoi Dubuc, Eduardo J. Category Theory Grothendieck Topos 2-Cofiltered Bilimit |
title_short |
A construction of 2-cofiltered bilimits of topoi |
title_full |
A construction of 2-cofiltered bilimits of topoi |
title_fullStr |
A construction of 2-cofiltered bilimits of topoi |
title_full_unstemmed |
A construction of 2-cofiltered bilimits of topoi |
title_sort |
A construction of 2-cofiltered bilimits of topoi |
dc.creator.none.fl_str_mv |
Dubuc, Eduardo J. Yuhjtman, Sergio Andrés |
author |
Dubuc, Eduardo J. |
author_facet |
Dubuc, Eduardo J. Yuhjtman, Sergio Andrés |
author_role |
author |
author2 |
Yuhjtman, Sergio Andrés |
author2_role |
author |
dc.subject.none.fl_str_mv |
Category Theory Grothendieck Topos 2-Cofiltered Bilimit |
topic |
Category Theory Grothendieck Topos 2-Cofiltered Bilimit |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We show the existence of bilimits of 2-cofiltered diagrams of topoi, generalizing the construction of cofiltered bilimits developed in [2]. For any given such diagram represented by any 2-cofiltered diagram of small sites with finite limits, we construct a small site for the bilimit topos (there is no loss of generality since we also prove that any such diagram can be so represented). This is done by taking the 2-filtered bicolimit of the underlying categories and inverse image functors. We use the construction of this bicolimit developed in [4], where it is proved that if the categories in the diagram have finite limits and the transition functors are exact, then the bicolimit category has finite limits and the pseudocone functors are exact. An application of our result here is the fact that every Galois topos has points [3]. Nous montrons l’existence des bilimites de diagrammes 2-cofiltr´ees de topos, g´en´eralisant la construction de bilimites cofiltr´ees d´evelopp´ee dans [2]. Nous montrons qu’un tel diagramme peut ˆetre repr´esent´e par un diagramme 2-cofiltr´e de petits sites avec limites finies, and nous construisons un petit site pour le topos bilimite. Nous faisons ceci en consid´erant le 2-filtr´e bicolimite des cat´egories sous-jacentes et leurs foncteurs image inverse. Nous appliquons la construction de cette bicolimite, d´evelopp´ee dans [4], ou` il est montr´e que si les cat´egories dans un diagramme ont des limites finies et les foncteurs de transition sont exacts, alors la cat´egorie bicolimite a aussi des limites finies et les foncteurs du pseudocone sont exacts. Une application de notre r´esultat est que tout topos de Galois a des points [3]. Fil: Yuhjtman, Sergio Andrés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
We show the existence of bilimits of 2-cofiltered diagrams of topoi, generalizing the construction of cofiltered bilimits developed in [2]. For any given such diagram represented by any 2-cofiltered diagram of small sites with finite limits, we construct a small site for the bilimit topos (there is no loss of generality since we also prove that any such diagram can be so represented). This is done by taking the 2-filtered bicolimit of the underlying categories and inverse image functors. We use the construction of this bicolimit developed in [4], where it is proved that if the categories in the diagram have finite limits and the transition functors are exact, then the bicolimit category has finite limits and the pseudocone functors are exact. An application of our result here is the fact that every Galois topos has points [3]. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/93747 Dubuc, Eduardo J.; Yuhjtman, Sergio Andrés; A construction of 2-cofiltered bilimits of topoi; Ehresman, Andree; Cahiers de Topologie Et Geometrie Differentielle Categoriques; 52; 4; 10-2011; 242-252 0008-0004 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/93747 |
identifier_str_mv |
Dubuc, Eduardo J.; Yuhjtman, Sergio Andrés; A construction of 2-cofiltered bilimits of topoi; Ehresman, Andree; Cahiers de Topologie Et Geometrie Differentielle Categoriques; 52; 4; 10-2011; 242-252 0008-0004 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://cahierstgdc.com/index.php/volumes/volume-lii-2011/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Ehresman, Andree |
publisher.none.fl_str_mv |
Ehresman, Andree |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082879558254592 |
score |
13.22299 |