A construction of 2-cofiltered bilimits of topoi

Autores
Dubuc, Eduardo J.; Yuhjtman, Sergio Andrés
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We show the existence of bilimits of 2-cofiltered diagrams of topoi, generalizing the construction of cofiltered bilimits developed in [2]. For any given such diagram represented by any 2-cofiltered diagram of small sites with finite limits, we construct a small site for the bilimit topos (there is no loss of generality since we also prove that any such diagram can be so represented). This is done by taking the 2-filtered bicolimit of the underlying categories and inverse image functors. We use the construction of this bicolimit developed in [4], where it is proved that if the categories in the diagram have finite limits and the transition functors are exact, then the bicolimit category has finite limits and the pseudocone functors are exact. An application of our result here is the fact that every Galois topos has points [3].
Nous montrons l’existence des bilimites de diagrammes 2-cofiltr´ees de topos, g´en´eralisant la construction de bilimites cofiltr´ees d´evelopp´ee dans [2]. Nous montrons qu’un tel diagramme peut ˆetre repr´esent´e par un diagramme 2-cofiltr´e de petits sites avec limites finies, and nous construisons un petit site pour le topos bilimite. Nous faisons ceci en consid´erant le 2-filtr´e bicolimite des cat´egories sous-jacentes et leurs foncteurs image inverse. Nous appliquons la construction de cette bicolimite, d´evelopp´ee dans [4], ou` il est montr´e que si les cat´egories dans un diagramme ont des limites finies et les foncteurs de transition sont exacts, alors la cat´egorie bicolimite a aussi des limites finies et les foncteurs du pseudocone sont exacts. Une application de notre r´esultat est que tout topos de Galois a des points [3].
Fil: Yuhjtman, Sergio Andrés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Materia
Category Theory
Grothendieck Topos
2-Cofiltered Bilimit
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/93747

id CONICETDig_0266fd0664dc3f4a37169aa7aff165e3
oai_identifier_str oai:ri.conicet.gov.ar:11336/93747
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A construction of 2-cofiltered bilimits of topoiDubuc, Eduardo J.Yuhjtman, Sergio AndrésCategory TheoryGrothendieck Topos2-Cofiltered Bilimithttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We show the existence of bilimits of 2-cofiltered diagrams of topoi, generalizing the construction of cofiltered bilimits developed in [2]. For any given such diagram represented by any 2-cofiltered diagram of small sites with finite limits, we construct a small site for the bilimit topos (there is no loss of generality since we also prove that any such diagram can be so represented). This is done by taking the 2-filtered bicolimit of the underlying categories and inverse image functors. We use the construction of this bicolimit developed in [4], where it is proved that if the categories in the diagram have finite limits and the transition functors are exact, then the bicolimit category has finite limits and the pseudocone functors are exact. An application of our result here is the fact that every Galois topos has points [3].Nous montrons l’existence des bilimites de diagrammes 2-cofiltr´ees de topos, g´en´eralisant la construction de bilimites cofiltr´ees d´evelopp´ee dans [2]. Nous montrons qu’un tel diagramme peut ˆetre repr´esent´e par un diagramme 2-cofiltr´e de petits sites avec limites finies, and nous construisons un petit site pour le topos bilimite. Nous faisons ceci en consid´erant le 2-filtr´e bicolimite des cat´egories sous-jacentes et leurs foncteurs image inverse. Nous appliquons la construction de cette bicolimite, d´evelopp´ee dans [4], ou` il est montr´e que si les cat´egories dans un diagramme ont des limites finies et les foncteurs de transition sont exacts, alors la cat´egorie bicolimite a aussi des limites finies et les foncteurs du pseudocone sont exacts. Une application de notre r´esultat est que tout topos de Galois a des points [3].Fil: Yuhjtman, Sergio Andrés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaEhresman, Andree2011-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/93747Dubuc, Eduardo J.; Yuhjtman, Sergio Andrés; A construction of 2-cofiltered bilimits of topoi; Ehresman, Andree; Cahiers de Topologie Et Geometrie Differentielle Categoriques; 52; 4; 10-2011; 242-2520008-0004CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://cahierstgdc.com/index.php/volumes/volume-lii-2011/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:39:26Zoai:ri.conicet.gov.ar:11336/93747instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:39:27.112CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A construction of 2-cofiltered bilimits of topoi
title A construction of 2-cofiltered bilimits of topoi
spellingShingle A construction of 2-cofiltered bilimits of topoi
Dubuc, Eduardo J.
Category Theory
Grothendieck Topos
2-Cofiltered Bilimit
title_short A construction of 2-cofiltered bilimits of topoi
title_full A construction of 2-cofiltered bilimits of topoi
title_fullStr A construction of 2-cofiltered bilimits of topoi
title_full_unstemmed A construction of 2-cofiltered bilimits of topoi
title_sort A construction of 2-cofiltered bilimits of topoi
dc.creator.none.fl_str_mv Dubuc, Eduardo J.
Yuhjtman, Sergio Andrés
author Dubuc, Eduardo J.
author_facet Dubuc, Eduardo J.
Yuhjtman, Sergio Andrés
author_role author
author2 Yuhjtman, Sergio Andrés
author2_role author
dc.subject.none.fl_str_mv Category Theory
Grothendieck Topos
2-Cofiltered Bilimit
topic Category Theory
Grothendieck Topos
2-Cofiltered Bilimit
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We show the existence of bilimits of 2-cofiltered diagrams of topoi, generalizing the construction of cofiltered bilimits developed in [2]. For any given such diagram represented by any 2-cofiltered diagram of small sites with finite limits, we construct a small site for the bilimit topos (there is no loss of generality since we also prove that any such diagram can be so represented). This is done by taking the 2-filtered bicolimit of the underlying categories and inverse image functors. We use the construction of this bicolimit developed in [4], where it is proved that if the categories in the diagram have finite limits and the transition functors are exact, then the bicolimit category has finite limits and the pseudocone functors are exact. An application of our result here is the fact that every Galois topos has points [3].
Nous montrons l’existence des bilimites de diagrammes 2-cofiltr´ees de topos, g´en´eralisant la construction de bilimites cofiltr´ees d´evelopp´ee dans [2]. Nous montrons qu’un tel diagramme peut ˆetre repr´esent´e par un diagramme 2-cofiltr´e de petits sites avec limites finies, and nous construisons un petit site pour le topos bilimite. Nous faisons ceci en consid´erant le 2-filtr´e bicolimite des cat´egories sous-jacentes et leurs foncteurs image inverse. Nous appliquons la construction de cette bicolimite, d´evelopp´ee dans [4], ou` il est montr´e que si les cat´egories dans un diagramme ont des limites finies et les foncteurs de transition sont exacts, alors la cat´egorie bicolimite a aussi des limites finies et les foncteurs du pseudocone sont exacts. Une application de notre r´esultat est que tout topos de Galois a des points [3].
Fil: Yuhjtman, Sergio Andrés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
description We show the existence of bilimits of 2-cofiltered diagrams of topoi, generalizing the construction of cofiltered bilimits developed in [2]. For any given such diagram represented by any 2-cofiltered diagram of small sites with finite limits, we construct a small site for the bilimit topos (there is no loss of generality since we also prove that any such diagram can be so represented). This is done by taking the 2-filtered bicolimit of the underlying categories and inverse image functors. We use the construction of this bicolimit developed in [4], where it is proved that if the categories in the diagram have finite limits and the transition functors are exact, then the bicolimit category has finite limits and the pseudocone functors are exact. An application of our result here is the fact that every Galois topos has points [3].
publishDate 2011
dc.date.none.fl_str_mv 2011-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/93747
Dubuc, Eduardo J.; Yuhjtman, Sergio Andrés; A construction of 2-cofiltered bilimits of topoi; Ehresman, Andree; Cahiers de Topologie Et Geometrie Differentielle Categoriques; 52; 4; 10-2011; 242-252
0008-0004
CONICET Digital
CONICET
url http://hdl.handle.net/11336/93747
identifier_str_mv Dubuc, Eduardo J.; Yuhjtman, Sergio Andrés; A construction of 2-cofiltered bilimits of topoi; Ehresman, Andree; Cahiers de Topologie Et Geometrie Differentielle Categoriques; 52; 4; 10-2011; 242-252
0008-0004
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://cahierstgdc.com/index.php/volumes/volume-lii-2011/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Ehresman, Andree
publisher.none.fl_str_mv Ehresman, Andree
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082879558254592
score 13.22299