Wearable physiological signals under acute stress and exercise conditions
- Autores
- Hongn, Andrea; Bosch, Facundo; Prado, Lara Eleonora; Ferrández, José Manuel; Bonomini, Maria Paula
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work, a novel dataset containing physiological signals recorded non invasevely during structured acute stress induction, as well as aerobic and anaerobic exercise sessions is presented. The physiological data were collected using the Empatica E4, a wearable device that measures electrodermal activity, skin temperature, three-axis accelerometry and blood volume pulse, from which heart rate and heart rate variability features can be derived. A stress induction protocol was designed using mathematical and emotional tasks to elicit physiological responses. For aerobic and anaerobic exercise, a stationary bike routine was developed to distinguish between the two types of activity. The dataset includes records from 36 healthy individuals during the stress protocol, 30 during aerobic exercise, and 31 during anaerobic exercise. Several machine learning algorithms were applied to validate the dataset, with XGBoost achieving an accuracy of 93% in classifying stress versus rest, 91% in distinguishing between aerobic and anaerobic exercise, and 84% in a four-label classification task involving stress, rest, aerobic, and anaerobic activities. The dataset is publicly available for further research.
Fil: Hongn, Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina
Fil: Bosch, Facundo. Instituto Tecnológico de Buenos Aires; Argentina
Fil: Prado, Lara Eleonora. Instituto Tecnológico de Buenos Aires; Argentina
Fil: Ferrández, José Manuel. Universidad Politécnica de Cartagena; España
Fil: Bonomini, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Instituto Tecnológico de Buenos Aires; Argentina - Materia
-
STRESS
WEARABLE
EXERCISE
ANAEROBIC
AEROBIC - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/263256
Ver los metadatos del registro completo
id |
CONICETDig_84a655eff4895618b564d4aa8af4619e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/263256 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Wearable physiological signals under acute stress and exercise conditionsHongn, AndreaBosch, FacundoPrado, Lara EleonoraFerrández, José ManuelBonomini, Maria PaulaSTRESSWEARABLEEXERCISEANAEROBICAEROBIChttps://purl.org/becyt/ford/2.6https://purl.org/becyt/ford/2In this work, a novel dataset containing physiological signals recorded non invasevely during structured acute stress induction, as well as aerobic and anaerobic exercise sessions is presented. The physiological data were collected using the Empatica E4, a wearable device that measures electrodermal activity, skin temperature, three-axis accelerometry and blood volume pulse, from which heart rate and heart rate variability features can be derived. A stress induction protocol was designed using mathematical and emotional tasks to elicit physiological responses. For aerobic and anaerobic exercise, a stationary bike routine was developed to distinguish between the two types of activity. The dataset includes records from 36 healthy individuals during the stress protocol, 30 during aerobic exercise, and 31 during anaerobic exercise. Several machine learning algorithms were applied to validate the dataset, with XGBoost achieving an accuracy of 93% in classifying stress versus rest, 91% in distinguishing between aerobic and anaerobic exercise, and 84% in a four-label classification task involving stress, rest, aerobic, and anaerobic activities. The dataset is publicly available for further research.Fil: Hongn, Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; ArgentinaFil: Bosch, Facundo. Instituto Tecnológico de Buenos Aires; ArgentinaFil: Prado, Lara Eleonora. Instituto Tecnológico de Buenos Aires; ArgentinaFil: Ferrández, José Manuel. Universidad Politécnica de Cartagena; EspañaFil: Bonomini, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Instituto Tecnológico de Buenos Aires; ArgentinaSpringer2025-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/263256Hongn, Andrea; Bosch, Facundo; Prado, Lara Eleonora; Ferrández, José Manuel; Bonomini, Maria Paula; Wearable physiological signals under acute stress and exercise conditions; Springer; Scientific Data; 12; 1; 3-2025; 1-102052-4463CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41597-025-04845-9info:eu-repo/semantics/altIdentifier/doi/10.1038/s41597-025-04845-9info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:07Zoai:ri.conicet.gov.ar:11336/263256instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:07.77CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Wearable physiological signals under acute stress and exercise conditions |
title |
Wearable physiological signals under acute stress and exercise conditions |
spellingShingle |
Wearable physiological signals under acute stress and exercise conditions Hongn, Andrea STRESS WEARABLE EXERCISE ANAEROBIC AEROBIC |
title_short |
Wearable physiological signals under acute stress and exercise conditions |
title_full |
Wearable physiological signals under acute stress and exercise conditions |
title_fullStr |
Wearable physiological signals under acute stress and exercise conditions |
title_full_unstemmed |
Wearable physiological signals under acute stress and exercise conditions |
title_sort |
Wearable physiological signals under acute stress and exercise conditions |
dc.creator.none.fl_str_mv |
Hongn, Andrea Bosch, Facundo Prado, Lara Eleonora Ferrández, José Manuel Bonomini, Maria Paula |
author |
Hongn, Andrea |
author_facet |
Hongn, Andrea Bosch, Facundo Prado, Lara Eleonora Ferrández, José Manuel Bonomini, Maria Paula |
author_role |
author |
author2 |
Bosch, Facundo Prado, Lara Eleonora Ferrández, José Manuel Bonomini, Maria Paula |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
STRESS WEARABLE EXERCISE ANAEROBIC AEROBIC |
topic |
STRESS WEARABLE EXERCISE ANAEROBIC AEROBIC |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.6 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this work, a novel dataset containing physiological signals recorded non invasevely during structured acute stress induction, as well as aerobic and anaerobic exercise sessions is presented. The physiological data were collected using the Empatica E4, a wearable device that measures electrodermal activity, skin temperature, three-axis accelerometry and blood volume pulse, from which heart rate and heart rate variability features can be derived. A stress induction protocol was designed using mathematical and emotional tasks to elicit physiological responses. For aerobic and anaerobic exercise, a stationary bike routine was developed to distinguish between the two types of activity. The dataset includes records from 36 healthy individuals during the stress protocol, 30 during aerobic exercise, and 31 during anaerobic exercise. Several machine learning algorithms were applied to validate the dataset, with XGBoost achieving an accuracy of 93% in classifying stress versus rest, 91% in distinguishing between aerobic and anaerobic exercise, and 84% in a four-label classification task involving stress, rest, aerobic, and anaerobic activities. The dataset is publicly available for further research. Fil: Hongn, Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina Fil: Bosch, Facundo. Instituto Tecnológico de Buenos Aires; Argentina Fil: Prado, Lara Eleonora. Instituto Tecnológico de Buenos Aires; Argentina Fil: Ferrández, José Manuel. Universidad Politécnica de Cartagena; España Fil: Bonomini, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Instituto Tecnológico de Buenos Aires; Argentina |
description |
In this work, a novel dataset containing physiological signals recorded non invasevely during structured acute stress induction, as well as aerobic and anaerobic exercise sessions is presented. The physiological data were collected using the Empatica E4, a wearable device that measures electrodermal activity, skin temperature, three-axis accelerometry and blood volume pulse, from which heart rate and heart rate variability features can be derived. A stress induction protocol was designed using mathematical and emotional tasks to elicit physiological responses. For aerobic and anaerobic exercise, a stationary bike routine was developed to distinguish between the two types of activity. The dataset includes records from 36 healthy individuals during the stress protocol, 30 during aerobic exercise, and 31 during anaerobic exercise. Several machine learning algorithms were applied to validate the dataset, with XGBoost achieving an accuracy of 93% in classifying stress versus rest, 91% in distinguishing between aerobic and anaerobic exercise, and 84% in a four-label classification task involving stress, rest, aerobic, and anaerobic activities. The dataset is publicly available for further research. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/263256 Hongn, Andrea; Bosch, Facundo; Prado, Lara Eleonora; Ferrández, José Manuel; Bonomini, Maria Paula; Wearable physiological signals under acute stress and exercise conditions; Springer; Scientific Data; 12; 1; 3-2025; 1-10 2052-4463 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/263256 |
identifier_str_mv |
Hongn, Andrea; Bosch, Facundo; Prado, Lara Eleonora; Ferrández, José Manuel; Bonomini, Maria Paula; Wearable physiological signals under acute stress and exercise conditions; Springer; Scientific Data; 12; 1; 3-2025; 1-10 2052-4463 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41597-025-04845-9 info:eu-repo/semantics/altIdentifier/doi/10.1038/s41597-025-04845-9 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269738704568320 |
score |
13.13397 |