Multiresolution Approximations and Wavelet Bases of Weighted Lp Spaces
- Autores
- Aimar, Hugo Alejandro; Bernardis, Ana Lucia; Martín Reyes, Francisco Javier
- Año de publicación
- 2003
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study boundedness and convergence on Lp(ℝn, dμ) of the projection operators Pj given by MRA structures with non-necessarily compactly supported scaling function. As a consequence, we prove that if w is a locally integrable function such that w -1/p-1 (x)(1+|x|)-N is integrable for some N > 0, then the Muckenhoupt Ap condition is necessary and sufficient for the associated wavelet system to be an unconditional basis for the weighted space L p(ℝn, w(x) dx), 1 < p < ∞.
Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Martín Reyes, Francisco Javier. Universidad de Málaga; España - Materia
-
AP WEIGHTS
WAVELETS
WEIGHTED LEBESGUE SPACES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/100605
Ver los metadatos del registro completo
| id |
CONICETDig_83c31090cc9ef5943470593ccfd06bbc |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/100605 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Multiresolution Approximations and Wavelet Bases of Weighted Lp SpacesAimar, Hugo AlejandroBernardis, Ana LuciaMartín Reyes, Francisco JavierAP WEIGHTSWAVELETSWEIGHTED LEBESGUE SPACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study boundedness and convergence on Lp(ℝn, dμ) of the projection operators Pj given by MRA structures with non-necessarily compactly supported scaling function. As a consequence, we prove that if w is a locally integrable function such that w -1/p-1 (x)(1+|x|)-N is integrable for some N > 0, then the Muckenhoupt Ap condition is necessary and sufficient for the associated wavelet system to be an unconditional basis for the weighted space L p(ℝn, w(x) dx), 1 < p < ∞.Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Martín Reyes, Francisco Javier. Universidad de Málaga; EspañaBirkhauser Boston Inc2003-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100605Aimar, Hugo Alejandro; Bernardis, Ana Lucia; Martín Reyes, Francisco Javier; Multiresolution Approximations and Wavelet Bases of Weighted Lp Spaces; Birkhauser Boston Inc; Journal Of Fourier Analysis And Applications; 9; 5; 3-2003; 497-5101069-5869CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00041-003-0024-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-26T09:08:20Zoai:ri.conicet.gov.ar:11336/100605instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-26 09:08:20.571CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Multiresolution Approximations and Wavelet Bases of Weighted Lp Spaces |
| title |
Multiresolution Approximations and Wavelet Bases of Weighted Lp Spaces |
| spellingShingle |
Multiresolution Approximations and Wavelet Bases of Weighted Lp Spaces Aimar, Hugo Alejandro AP WEIGHTS WAVELETS WEIGHTED LEBESGUE SPACES |
| title_short |
Multiresolution Approximations and Wavelet Bases of Weighted Lp Spaces |
| title_full |
Multiresolution Approximations and Wavelet Bases of Weighted Lp Spaces |
| title_fullStr |
Multiresolution Approximations and Wavelet Bases of Weighted Lp Spaces |
| title_full_unstemmed |
Multiresolution Approximations and Wavelet Bases of Weighted Lp Spaces |
| title_sort |
Multiresolution Approximations and Wavelet Bases of Weighted Lp Spaces |
| dc.creator.none.fl_str_mv |
Aimar, Hugo Alejandro Bernardis, Ana Lucia Martín Reyes, Francisco Javier |
| author |
Aimar, Hugo Alejandro |
| author_facet |
Aimar, Hugo Alejandro Bernardis, Ana Lucia Martín Reyes, Francisco Javier |
| author_role |
author |
| author2 |
Bernardis, Ana Lucia Martín Reyes, Francisco Javier |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
AP WEIGHTS WAVELETS WEIGHTED LEBESGUE SPACES |
| topic |
AP WEIGHTS WAVELETS WEIGHTED LEBESGUE SPACES |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We study boundedness and convergence on Lp(ℝn, dμ) of the projection operators Pj given by MRA structures with non-necessarily compactly supported scaling function. As a consequence, we prove that if w is a locally integrable function such that w -1/p-1 (x)(1+|x|)-N is integrable for some N > 0, then the Muckenhoupt Ap condition is necessary and sufficient for the associated wavelet system to be an unconditional basis for the weighted space L p(ℝn, w(x) dx), 1 < p < ∞. Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Martín Reyes, Francisco Javier. Universidad de Málaga; España |
| description |
We study boundedness and convergence on Lp(ℝn, dμ) of the projection operators Pj given by MRA structures with non-necessarily compactly supported scaling function. As a consequence, we prove that if w is a locally integrable function such that w -1/p-1 (x)(1+|x|)-N is integrable for some N > 0, then the Muckenhoupt Ap condition is necessary and sufficient for the associated wavelet system to be an unconditional basis for the weighted space L p(ℝn, w(x) dx), 1 < p < ∞. |
| publishDate |
2003 |
| dc.date.none.fl_str_mv |
2003-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/100605 Aimar, Hugo Alejandro; Bernardis, Ana Lucia; Martín Reyes, Francisco Javier; Multiresolution Approximations and Wavelet Bases of Weighted Lp Spaces; Birkhauser Boston Inc; Journal Of Fourier Analysis And Applications; 9; 5; 3-2003; 497-510 1069-5869 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/100605 |
| identifier_str_mv |
Aimar, Hugo Alejandro; Bernardis, Ana Lucia; Martín Reyes, Francisco Javier; Multiresolution Approximations and Wavelet Bases of Weighted Lp Spaces; Birkhauser Boston Inc; Journal Of Fourier Analysis And Applications; 9; 5; 3-2003; 497-510 1069-5869 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00041-003-0024-y |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Birkhauser Boston Inc |
| publisher.none.fl_str_mv |
Birkhauser Boston Inc |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1849873574136905728 |
| score |
13.011256 |