Potential operators and their commutators acting between variable Lebesgue spaces with different weights

Autores
Melchiori, Luciana; Pradolini, Gladis Guadalupe
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We prove that a generalized Fefferman–Phong type conditions on a pair of weights u and v is sufficient for the boundedness of the potential type operator from Lv p(.) into Lu q(.). We also obtain an analogous estimates for their commutators with BMO symbols. We include some estimates for a generalized maximal operator in the variable context Ms(·), and its fractional version, Mβ(·),s(·), between variable versions of L log L type spaces, where S(·) and Mβ(·) are exponents belonging to certain classes.
Fil: Melchiori, Luciana. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Pradolini, Gladis Guadalupe. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Materia
42b25
Commutators
Potential Operators
Variable Lebesgue Spaces
Weights
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/82926

id CONICETDig_80df469f89a33d95dbf7333ad0167872
oai_identifier_str oai:ri.conicet.gov.ar:11336/82926
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Potential operators and their commutators acting between variable Lebesgue spaces with different weightsMelchiori, LucianaPradolini, Gladis Guadalupe42b25CommutatorsPotential OperatorsVariable Lebesgue SpacesWeightshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove that a generalized Fefferman–Phong type conditions on a pair of weights u and v is sufficient for the boundedness of the potential type operator from Lv p(.) into Lu q(.). We also obtain an analogous estimates for their commutators with BMO symbols. We include some estimates for a generalized maximal operator in the variable context Ms(·), and its fractional version, Mβ(·),s(·), between variable versions of L log L type spaces, where S(·) and Mβ(·) are exponents belonging to certain classes.Fil: Melchiori, Luciana. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Pradolini, Gladis Guadalupe. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaTaylor & Francis2018-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/82926Melchiori, Luciana; Pradolini, Gladis Guadalupe; Potential operators and their commutators acting between variable Lebesgue spaces with different weights; Taylor & Francis; Integral Transforms And Special Functions; 29; 11; 11-2018; 909-9261065-2469CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/10652469.2018.1519807info:eu-repo/semantics/altIdentifier/doi/10.1080/10652469.2018.1519807info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:50:40Zoai:ri.conicet.gov.ar:11336/82926instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:50:41.125CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Potential operators and their commutators acting between variable Lebesgue spaces with different weights
title Potential operators and their commutators acting between variable Lebesgue spaces with different weights
spellingShingle Potential operators and their commutators acting between variable Lebesgue spaces with different weights
Melchiori, Luciana
42b25
Commutators
Potential Operators
Variable Lebesgue Spaces
Weights
title_short Potential operators and their commutators acting between variable Lebesgue spaces with different weights
title_full Potential operators and their commutators acting between variable Lebesgue spaces with different weights
title_fullStr Potential operators and their commutators acting between variable Lebesgue spaces with different weights
title_full_unstemmed Potential operators and their commutators acting between variable Lebesgue spaces with different weights
title_sort Potential operators and their commutators acting between variable Lebesgue spaces with different weights
dc.creator.none.fl_str_mv Melchiori, Luciana
Pradolini, Gladis Guadalupe
author Melchiori, Luciana
author_facet Melchiori, Luciana
Pradolini, Gladis Guadalupe
author_role author
author2 Pradolini, Gladis Guadalupe
author2_role author
dc.subject.none.fl_str_mv 42b25
Commutators
Potential Operators
Variable Lebesgue Spaces
Weights
topic 42b25
Commutators
Potential Operators
Variable Lebesgue Spaces
Weights
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We prove that a generalized Fefferman–Phong type conditions on a pair of weights u and v is sufficient for the boundedness of the potential type operator from Lv p(.) into Lu q(.). We also obtain an analogous estimates for their commutators with BMO symbols. We include some estimates for a generalized maximal operator in the variable context Ms(·), and its fractional version, Mβ(·),s(·), between variable versions of L log L type spaces, where S(·) and Mβ(·) are exponents belonging to certain classes.
Fil: Melchiori, Luciana. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Pradolini, Gladis Guadalupe. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
description We prove that a generalized Fefferman–Phong type conditions on a pair of weights u and v is sufficient for the boundedness of the potential type operator from Lv p(.) into Lu q(.). We also obtain an analogous estimates for their commutators with BMO symbols. We include some estimates for a generalized maximal operator in the variable context Ms(·), and its fractional version, Mβ(·),s(·), between variable versions of L log L type spaces, where S(·) and Mβ(·) are exponents belonging to certain classes.
publishDate 2018
dc.date.none.fl_str_mv 2018-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/82926
Melchiori, Luciana; Pradolini, Gladis Guadalupe; Potential operators and their commutators acting between variable Lebesgue spaces with different weights; Taylor & Francis; Integral Transforms And Special Functions; 29; 11; 11-2018; 909-926
1065-2469
CONICET Digital
CONICET
url http://hdl.handle.net/11336/82926
identifier_str_mv Melchiori, Luciana; Pradolini, Gladis Guadalupe; Potential operators and their commutators acting between variable Lebesgue spaces with different weights; Taylor & Francis; Integral Transforms And Special Functions; 29; 11; 11-2018; 909-926
1065-2469
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/10652469.2018.1519807
info:eu-repo/semantics/altIdentifier/doi/10.1080/10652469.2018.1519807
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613561632948224
score 13.070432