Characterization of the weak-type boundedness of the Hilbert transform on weighted Lorentz spaces

Autores
Agora, Elona; Carro, María Jesús; Soria, Javier
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We characterize the weak-type boundedness of the Hilbert transform H on weighted Lorentz spaces Lambda_p(u,w) , with p>0, in terms of some geometric conditions on the weights u and w and the weak-type boundedness of the Hardy-Littlewood maximal operator on the same spaces. Our results recover simultaneously the theory of the boundedness of H on weighted Lebesgue spaces Lp(u) and Muckenhoupt weights Ap , and the theory on classical Lorentz spaces Lambda_p(w) and Ariño-Muckenhoupt weights Bp .
Fil: Agora, Elona. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina
Fil: Carro, María Jesús. Universidad de Barcelona; España;
Fil: Soria, Javier. Universidad de Barcelona; España;
Materia
Weighted Lorentz Spaces
Hilbert Transform
Muckenhoupt Weights
Bp Weights
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/3383

id CONICETDig_3f0c487de27a3b51834989928b5b6655
oai_identifier_str oai:ri.conicet.gov.ar:11336/3383
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Characterization of the weak-type boundedness of the Hilbert transform on weighted Lorentz spacesAgora, ElonaCarro, María JesúsSoria, JavierWeighted Lorentz SpacesHilbert TransformMuckenhoupt WeightsBp Weightshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We characterize the weak-type boundedness of the Hilbert transform H on weighted Lorentz spaces Lambda_p(u,w) , with p>0, in terms of some geometric conditions on the weights u and w and the weak-type boundedness of the Hardy-Littlewood maximal operator on the same spaces. Our results recover simultaneously the theory of the boundedness of H on weighted Lebesgue spaces Lp(u) and Muckenhoupt weights Ap , and the theory on classical Lorentz spaces Lambda_p(w) and Ariño-Muckenhoupt weights Bp .Fil: Agora, Elona. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; ArgentinaFil: Carro, María Jesús. Universidad de Barcelona; España;Fil: Soria, Javier. Universidad de Barcelona; España;Birkhauser Boston Inc2013-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3383Agora, Elona; Carro, María Jesús ; Soria, Javier; Characterization of the weak-type boundedness of the Hilbert transform on weighted Lorentz spaces; Birkhauser Boston Inc; Journal Of Fourier Analysis And Applications; 19; 5-2013; 712-7301069-5869enginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00041-013-9278-1info:eu-repo/semantics/altIdentifier/doi/10.1007/s00041-013-9278-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:26Zoai:ri.conicet.gov.ar:11336/3383instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:26.474CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Characterization of the weak-type boundedness of the Hilbert transform on weighted Lorentz spaces
title Characterization of the weak-type boundedness of the Hilbert transform on weighted Lorentz spaces
spellingShingle Characterization of the weak-type boundedness of the Hilbert transform on weighted Lorentz spaces
Agora, Elona
Weighted Lorentz Spaces
Hilbert Transform
Muckenhoupt Weights
Bp Weights
title_short Characterization of the weak-type boundedness of the Hilbert transform on weighted Lorentz spaces
title_full Characterization of the weak-type boundedness of the Hilbert transform on weighted Lorentz spaces
title_fullStr Characterization of the weak-type boundedness of the Hilbert transform on weighted Lorentz spaces
title_full_unstemmed Characterization of the weak-type boundedness of the Hilbert transform on weighted Lorentz spaces
title_sort Characterization of the weak-type boundedness of the Hilbert transform on weighted Lorentz spaces
dc.creator.none.fl_str_mv Agora, Elona
Carro, María Jesús
Soria, Javier
author Agora, Elona
author_facet Agora, Elona
Carro, María Jesús
Soria, Javier
author_role author
author2 Carro, María Jesús
Soria, Javier
author2_role author
author
dc.subject.none.fl_str_mv Weighted Lorentz Spaces
Hilbert Transform
Muckenhoupt Weights
Bp Weights
topic Weighted Lorentz Spaces
Hilbert Transform
Muckenhoupt Weights
Bp Weights
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We characterize the weak-type boundedness of the Hilbert transform H on weighted Lorentz spaces Lambda_p(u,w) , with p>0, in terms of some geometric conditions on the weights u and w and the weak-type boundedness of the Hardy-Littlewood maximal operator on the same spaces. Our results recover simultaneously the theory of the boundedness of H on weighted Lebesgue spaces Lp(u) and Muckenhoupt weights Ap , and the theory on classical Lorentz spaces Lambda_p(w) and Ariño-Muckenhoupt weights Bp .
Fil: Agora, Elona. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina
Fil: Carro, María Jesús. Universidad de Barcelona; España;
Fil: Soria, Javier. Universidad de Barcelona; España;
description We characterize the weak-type boundedness of the Hilbert transform H on weighted Lorentz spaces Lambda_p(u,w) , with p>0, in terms of some geometric conditions on the weights u and w and the weak-type boundedness of the Hardy-Littlewood maximal operator on the same spaces. Our results recover simultaneously the theory of the boundedness of H on weighted Lebesgue spaces Lp(u) and Muckenhoupt weights Ap , and the theory on classical Lorentz spaces Lambda_p(w) and Ariño-Muckenhoupt weights Bp .
publishDate 2013
dc.date.none.fl_str_mv 2013-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/3383
Agora, Elona; Carro, María Jesús ; Soria, Javier; Characterization of the weak-type boundedness of the Hilbert transform on weighted Lorentz spaces; Birkhauser Boston Inc; Journal Of Fourier Analysis And Applications; 19; 5-2013; 712-730
1069-5869
url http://hdl.handle.net/11336/3383
identifier_str_mv Agora, Elona; Carro, María Jesús ; Soria, Javier; Characterization of the weak-type boundedness of the Hilbert transform on weighted Lorentz spaces; Birkhauser Boston Inc; Journal Of Fourier Analysis And Applications; 19; 5-2013; 712-730
1069-5869
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00041-013-9278-1
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00041-013-9278-1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Birkhauser Boston Inc
publisher.none.fl_str_mv Birkhauser Boston Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268972225921024
score 13.13397