A Bio-inspired Datacenter Selection Scheduler for Federated Clouds and its Application to Frost Prediction
- Autores
- Pacini Naumovich, Elina Rocío; Iacono, Lucas Emanuel; Mateos Diaz, Cristian Maximiliano; Garcia Garino, Carlos Gabriel
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Frost is an agro-meteorological event which causes both damage in crops and important economic losses, therefore frost prediction applications (FPA) are very important to help farmers to mitigate possible damages. FPA involves the execution of many CPU-intensive jobs. This work focuses on efficiently running FPAs in paid federated Clouds, where custom virtual machines (VM) are launched in appropriate resources belonging to different providers. The goal of this work is to minimize both the makespan and monetary cost. We follow a federated Cloud model where scheduling is performed at three levels. First, at the broker level, a datacenter is selected taking into account certain criteria established by the user, such as lower costs or lower latencies. Second, at the infrastructure level, a specialized scheduler is responsible for mapping VMs to datacenter hosts. Finally, at the VM level, jobs are assigned for execution into the preallocated VMs. Our proposal mainly contributes to implementing bio-inspired strategies at two levels. Specifically, two broker-level schedulers based on Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO), which aim to select the datacenters taking into account the network latencies, monetary cost and the availability of computational resources in datacenters, are implemented. Then, VMs are allocated in the physical machines of that datacenter by another intra-datacenter scheduler also based on ACO and PSO. Performed experiments show that our bio-inspired scheduler succeed in reducing both the makespan and the monetary cost with average gains of around 50% compared to genetic algorithms.
Fil: Pacini Naumovich, Elina Rocío. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Iacono, Lucas Emanuel. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Garcia Garino, Carlos Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina - Materia
-
SCIENTIFIC COMPUTING
FROST PREDICTION APPLICATIONS
CLOUD COMPUTING
SCHEDULING
ANT COLONY OPTIMIZATION
PARTICLE SWARM OPTIMIZATION
GENETIC ALGORITHMS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/135246
Ver los metadatos del registro completo
id |
CONICETDig_833fe239bbaefbe66825651bd9a4fbb4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/135246 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Bio-inspired Datacenter Selection Scheduler for Federated Clouds and its Application to Frost PredictionPacini Naumovich, Elina RocíoIacono, Lucas EmanuelMateos Diaz, Cristian MaximilianoGarcia Garino, Carlos GabrielSCIENTIFIC COMPUTINGFROST PREDICTION APPLICATIONSCLOUD COMPUTINGSCHEDULINGANT COLONY OPTIMIZATIONPARTICLE SWARM OPTIMIZATIONGENETIC ALGORITHMShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Frost is an agro-meteorological event which causes both damage in crops and important economic losses, therefore frost prediction applications (FPA) are very important to help farmers to mitigate possible damages. FPA involves the execution of many CPU-intensive jobs. This work focuses on efficiently running FPAs in paid federated Clouds, where custom virtual machines (VM) are launched in appropriate resources belonging to different providers. The goal of this work is to minimize both the makespan and monetary cost. We follow a federated Cloud model where scheduling is performed at three levels. First, at the broker level, a datacenter is selected taking into account certain criteria established by the user, such as lower costs or lower latencies. Second, at the infrastructure level, a specialized scheduler is responsible for mapping VMs to datacenter hosts. Finally, at the VM level, jobs are assigned for execution into the preallocated VMs. Our proposal mainly contributes to implementing bio-inspired strategies at two levels. Specifically, two broker-level schedulers based on Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO), which aim to select the datacenters taking into account the network latencies, monetary cost and the availability of computational resources in datacenters, are implemented. Then, VMs are allocated in the physical machines of that datacenter by another intra-datacenter scheduler also based on ACO and PSO. Performed experiments show that our bio-inspired scheduler succeed in reducing both the makespan and the monetary cost with average gains of around 50% compared to genetic algorithms.Fil: Pacini Naumovich, Elina Rocío. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Iacono, Lucas Emanuel. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Garcia Garino, Carlos Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; ArgentinaSpringer2018-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/135246Pacini Naumovich, Elina Rocío; Iacono, Lucas Emanuel; Mateos Diaz, Cristian Maximiliano; Garcia Garino, Carlos Gabriel; A Bio-inspired Datacenter Selection Scheduler for Federated Clouds and its Application to Frost Prediction; Springer; Journal Of Network And Systems Management; 27; 3; 11-2018; 688-7291064-7570CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10922-018-9481-0info:eu-repo/semantics/altIdentifier/doi/10.1007/s10922-018-9481-0info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:40Zoai:ri.conicet.gov.ar:11336/135246instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:40.971CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Bio-inspired Datacenter Selection Scheduler for Federated Clouds and its Application to Frost Prediction |
title |
A Bio-inspired Datacenter Selection Scheduler for Federated Clouds and its Application to Frost Prediction |
spellingShingle |
A Bio-inspired Datacenter Selection Scheduler for Federated Clouds and its Application to Frost Prediction Pacini Naumovich, Elina Rocío SCIENTIFIC COMPUTING FROST PREDICTION APPLICATIONS CLOUD COMPUTING SCHEDULING ANT COLONY OPTIMIZATION PARTICLE SWARM OPTIMIZATION GENETIC ALGORITHMS |
title_short |
A Bio-inspired Datacenter Selection Scheduler for Federated Clouds and its Application to Frost Prediction |
title_full |
A Bio-inspired Datacenter Selection Scheduler for Federated Clouds and its Application to Frost Prediction |
title_fullStr |
A Bio-inspired Datacenter Selection Scheduler for Federated Clouds and its Application to Frost Prediction |
title_full_unstemmed |
A Bio-inspired Datacenter Selection Scheduler for Federated Clouds and its Application to Frost Prediction |
title_sort |
A Bio-inspired Datacenter Selection Scheduler for Federated Clouds and its Application to Frost Prediction |
dc.creator.none.fl_str_mv |
Pacini Naumovich, Elina Rocío Iacono, Lucas Emanuel Mateos Diaz, Cristian Maximiliano Garcia Garino, Carlos Gabriel |
author |
Pacini Naumovich, Elina Rocío |
author_facet |
Pacini Naumovich, Elina Rocío Iacono, Lucas Emanuel Mateos Diaz, Cristian Maximiliano Garcia Garino, Carlos Gabriel |
author_role |
author |
author2 |
Iacono, Lucas Emanuel Mateos Diaz, Cristian Maximiliano Garcia Garino, Carlos Gabriel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
SCIENTIFIC COMPUTING FROST PREDICTION APPLICATIONS CLOUD COMPUTING SCHEDULING ANT COLONY OPTIMIZATION PARTICLE SWARM OPTIMIZATION GENETIC ALGORITHMS |
topic |
SCIENTIFIC COMPUTING FROST PREDICTION APPLICATIONS CLOUD COMPUTING SCHEDULING ANT COLONY OPTIMIZATION PARTICLE SWARM OPTIMIZATION GENETIC ALGORITHMS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Frost is an agro-meteorological event which causes both damage in crops and important economic losses, therefore frost prediction applications (FPA) are very important to help farmers to mitigate possible damages. FPA involves the execution of many CPU-intensive jobs. This work focuses on efficiently running FPAs in paid federated Clouds, where custom virtual machines (VM) are launched in appropriate resources belonging to different providers. The goal of this work is to minimize both the makespan and monetary cost. We follow a federated Cloud model where scheduling is performed at three levels. First, at the broker level, a datacenter is selected taking into account certain criteria established by the user, such as lower costs or lower latencies. Second, at the infrastructure level, a specialized scheduler is responsible for mapping VMs to datacenter hosts. Finally, at the VM level, jobs are assigned for execution into the preallocated VMs. Our proposal mainly contributes to implementing bio-inspired strategies at two levels. Specifically, two broker-level schedulers based on Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO), which aim to select the datacenters taking into account the network latencies, monetary cost and the availability of computational resources in datacenters, are implemented. Then, VMs are allocated in the physical machines of that datacenter by another intra-datacenter scheduler also based on ACO and PSO. Performed experiments show that our bio-inspired scheduler succeed in reducing both the makespan and the monetary cost with average gains of around 50% compared to genetic algorithms. Fil: Pacini Naumovich, Elina Rocío. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Iacono, Lucas Emanuel. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Garcia Garino, Carlos Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina |
description |
Frost is an agro-meteorological event which causes both damage in crops and important economic losses, therefore frost prediction applications (FPA) are very important to help farmers to mitigate possible damages. FPA involves the execution of many CPU-intensive jobs. This work focuses on efficiently running FPAs in paid federated Clouds, where custom virtual machines (VM) are launched in appropriate resources belonging to different providers. The goal of this work is to minimize both the makespan and monetary cost. We follow a federated Cloud model where scheduling is performed at three levels. First, at the broker level, a datacenter is selected taking into account certain criteria established by the user, such as lower costs or lower latencies. Second, at the infrastructure level, a specialized scheduler is responsible for mapping VMs to datacenter hosts. Finally, at the VM level, jobs are assigned for execution into the preallocated VMs. Our proposal mainly contributes to implementing bio-inspired strategies at two levels. Specifically, two broker-level schedulers based on Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO), which aim to select the datacenters taking into account the network latencies, monetary cost and the availability of computational resources in datacenters, are implemented. Then, VMs are allocated in the physical machines of that datacenter by another intra-datacenter scheduler also based on ACO and PSO. Performed experiments show that our bio-inspired scheduler succeed in reducing both the makespan and the monetary cost with average gains of around 50% compared to genetic algorithms. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/135246 Pacini Naumovich, Elina Rocío; Iacono, Lucas Emanuel; Mateos Diaz, Cristian Maximiliano; Garcia Garino, Carlos Gabriel; A Bio-inspired Datacenter Selection Scheduler for Federated Clouds and its Application to Frost Prediction; Springer; Journal Of Network And Systems Management; 27; 3; 11-2018; 688-729 1064-7570 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/135246 |
identifier_str_mv |
Pacini Naumovich, Elina Rocío; Iacono, Lucas Emanuel; Mateos Diaz, Cristian Maximiliano; Garcia Garino, Carlos Gabriel; A Bio-inspired Datacenter Selection Scheduler for Federated Clouds and its Application to Frost Prediction; Springer; Journal Of Network And Systems Management; 27; 3; 11-2018; 688-729 1064-7570 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10922-018-9481-0 info:eu-repo/semantics/altIdentifier/doi/10.1007/s10922-018-9481-0 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268934434193408 |
score |
13.13397 |