A Bio-inspired Datacenter Selection Scheduler for Federated Clouds and its Application to Frost Prediction

Autores
Pacini Naumovich, Elina Rocío; Iacono, Lucas Emanuel; Mateos Diaz, Cristian Maximiliano; Garcia Garino, Carlos Gabriel
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Frost is an agro-meteorological event which causes both damage in crops and important economic losses, therefore frost prediction applications (FPA) are very important to help farmers to mitigate possible damages. FPA involves the execution of many CPU-intensive jobs. This work focuses on efficiently running FPAs in paid federated Clouds, where custom virtual machines (VM) are launched in appropriate resources belonging to different providers. The goal of this work is to minimize both the makespan and monetary cost. We follow a federated Cloud model where scheduling is performed at three levels. First, at the broker level, a datacenter is selected taking into account certain criteria established by the user, such as lower costs or lower latencies. Second, at the infrastructure level, a specialized scheduler is responsible for mapping VMs to datacenter hosts. Finally, at the VM level, jobs are assigned for execution into the preallocated VMs. Our proposal mainly contributes to implementing bio-inspired strategies at two levels. Specifically, two broker-level schedulers based on Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO), which aim to select the datacenters taking into account the network latencies, monetary cost and the availability of computational resources in datacenters, are implemented. Then, VMs are allocated in the physical machines of that datacenter by another intra-datacenter scheduler also based on ACO and PSO. Performed experiments show that our bio-inspired scheduler succeed in reducing both the makespan and the monetary cost with average gains of around 50% compared to genetic algorithms.
Fil: Pacini Naumovich, Elina Rocío. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Iacono, Lucas Emanuel. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Garcia Garino, Carlos Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina
Materia
SCIENTIFIC COMPUTING
FROST PREDICTION APPLICATIONS
CLOUD COMPUTING
SCHEDULING
ANT COLONY OPTIMIZATION
PARTICLE SWARM OPTIMIZATION
GENETIC ALGORITHMS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/135246

id CONICETDig_833fe239bbaefbe66825651bd9a4fbb4
oai_identifier_str oai:ri.conicet.gov.ar:11336/135246
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A Bio-inspired Datacenter Selection Scheduler for Federated Clouds and its Application to Frost PredictionPacini Naumovich, Elina RocíoIacono, Lucas EmanuelMateos Diaz, Cristian MaximilianoGarcia Garino, Carlos GabrielSCIENTIFIC COMPUTINGFROST PREDICTION APPLICATIONSCLOUD COMPUTINGSCHEDULINGANT COLONY OPTIMIZATIONPARTICLE SWARM OPTIMIZATIONGENETIC ALGORITHMShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Frost is an agro-meteorological event which causes both damage in crops and important economic losses, therefore frost prediction applications (FPA) are very important to help farmers to mitigate possible damages. FPA involves the execution of many CPU-intensive jobs. This work focuses on efficiently running FPAs in paid federated Clouds, where custom virtual machines (VM) are launched in appropriate resources belonging to different providers. The goal of this work is to minimize both the makespan and monetary cost. We follow a federated Cloud model where scheduling is performed at three levels. First, at the broker level, a datacenter is selected taking into account certain criteria established by the user, such as lower costs or lower latencies. Second, at the infrastructure level, a specialized scheduler is responsible for mapping VMs to datacenter hosts. Finally, at the VM level, jobs are assigned for execution into the preallocated VMs. Our proposal mainly contributes to implementing bio-inspired strategies at two levels. Specifically, two broker-level schedulers based on Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO), which aim to select the datacenters taking into account the network latencies, monetary cost and the availability of computational resources in datacenters, are implemented. Then, VMs are allocated in the physical machines of that datacenter by another intra-datacenter scheduler also based on ACO and PSO. Performed experiments show that our bio-inspired scheduler succeed in reducing both the makespan and the monetary cost with average gains of around 50% compared to genetic algorithms.Fil: Pacini Naumovich, Elina Rocío. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Iacono, Lucas Emanuel. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Garcia Garino, Carlos Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; ArgentinaSpringer2018-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/135246Pacini Naumovich, Elina Rocío; Iacono, Lucas Emanuel; Mateos Diaz, Cristian Maximiliano; Garcia Garino, Carlos Gabriel; A Bio-inspired Datacenter Selection Scheduler for Federated Clouds and its Application to Frost Prediction; Springer; Journal Of Network And Systems Management; 27; 3; 11-2018; 688-7291064-7570CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10922-018-9481-0info:eu-repo/semantics/altIdentifier/doi/10.1007/s10922-018-9481-0info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:40Zoai:ri.conicet.gov.ar:11336/135246instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:40.971CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A Bio-inspired Datacenter Selection Scheduler for Federated Clouds and its Application to Frost Prediction
title A Bio-inspired Datacenter Selection Scheduler for Federated Clouds and its Application to Frost Prediction
spellingShingle A Bio-inspired Datacenter Selection Scheduler for Federated Clouds and its Application to Frost Prediction
Pacini Naumovich, Elina Rocío
SCIENTIFIC COMPUTING
FROST PREDICTION APPLICATIONS
CLOUD COMPUTING
SCHEDULING
ANT COLONY OPTIMIZATION
PARTICLE SWARM OPTIMIZATION
GENETIC ALGORITHMS
title_short A Bio-inspired Datacenter Selection Scheduler for Federated Clouds and its Application to Frost Prediction
title_full A Bio-inspired Datacenter Selection Scheduler for Federated Clouds and its Application to Frost Prediction
title_fullStr A Bio-inspired Datacenter Selection Scheduler for Federated Clouds and its Application to Frost Prediction
title_full_unstemmed A Bio-inspired Datacenter Selection Scheduler for Federated Clouds and its Application to Frost Prediction
title_sort A Bio-inspired Datacenter Selection Scheduler for Federated Clouds and its Application to Frost Prediction
dc.creator.none.fl_str_mv Pacini Naumovich, Elina Rocío
Iacono, Lucas Emanuel
Mateos Diaz, Cristian Maximiliano
Garcia Garino, Carlos Gabriel
author Pacini Naumovich, Elina Rocío
author_facet Pacini Naumovich, Elina Rocío
Iacono, Lucas Emanuel
Mateos Diaz, Cristian Maximiliano
Garcia Garino, Carlos Gabriel
author_role author
author2 Iacono, Lucas Emanuel
Mateos Diaz, Cristian Maximiliano
Garcia Garino, Carlos Gabriel
author2_role author
author
author
dc.subject.none.fl_str_mv SCIENTIFIC COMPUTING
FROST PREDICTION APPLICATIONS
CLOUD COMPUTING
SCHEDULING
ANT COLONY OPTIMIZATION
PARTICLE SWARM OPTIMIZATION
GENETIC ALGORITHMS
topic SCIENTIFIC COMPUTING
FROST PREDICTION APPLICATIONS
CLOUD COMPUTING
SCHEDULING
ANT COLONY OPTIMIZATION
PARTICLE SWARM OPTIMIZATION
GENETIC ALGORITHMS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Frost is an agro-meteorological event which causes both damage in crops and important economic losses, therefore frost prediction applications (FPA) are very important to help farmers to mitigate possible damages. FPA involves the execution of many CPU-intensive jobs. This work focuses on efficiently running FPAs in paid federated Clouds, where custom virtual machines (VM) are launched in appropriate resources belonging to different providers. The goal of this work is to minimize both the makespan and monetary cost. We follow a federated Cloud model where scheduling is performed at three levels. First, at the broker level, a datacenter is selected taking into account certain criteria established by the user, such as lower costs or lower latencies. Second, at the infrastructure level, a specialized scheduler is responsible for mapping VMs to datacenter hosts. Finally, at the VM level, jobs are assigned for execution into the preallocated VMs. Our proposal mainly contributes to implementing bio-inspired strategies at two levels. Specifically, two broker-level schedulers based on Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO), which aim to select the datacenters taking into account the network latencies, monetary cost and the availability of computational resources in datacenters, are implemented. Then, VMs are allocated in the physical machines of that datacenter by another intra-datacenter scheduler also based on ACO and PSO. Performed experiments show that our bio-inspired scheduler succeed in reducing both the makespan and the monetary cost with average gains of around 50% compared to genetic algorithms.
Fil: Pacini Naumovich, Elina Rocío. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Iacono, Lucas Emanuel. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Garcia Garino, Carlos Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina
description Frost is an agro-meteorological event which causes both damage in crops and important economic losses, therefore frost prediction applications (FPA) are very important to help farmers to mitigate possible damages. FPA involves the execution of many CPU-intensive jobs. This work focuses on efficiently running FPAs in paid federated Clouds, where custom virtual machines (VM) are launched in appropriate resources belonging to different providers. The goal of this work is to minimize both the makespan and monetary cost. We follow a federated Cloud model where scheduling is performed at three levels. First, at the broker level, a datacenter is selected taking into account certain criteria established by the user, such as lower costs or lower latencies. Second, at the infrastructure level, a specialized scheduler is responsible for mapping VMs to datacenter hosts. Finally, at the VM level, jobs are assigned for execution into the preallocated VMs. Our proposal mainly contributes to implementing bio-inspired strategies at two levels. Specifically, two broker-level schedulers based on Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO), which aim to select the datacenters taking into account the network latencies, monetary cost and the availability of computational resources in datacenters, are implemented. Then, VMs are allocated in the physical machines of that datacenter by another intra-datacenter scheduler also based on ACO and PSO. Performed experiments show that our bio-inspired scheduler succeed in reducing both the makespan and the monetary cost with average gains of around 50% compared to genetic algorithms.
publishDate 2018
dc.date.none.fl_str_mv 2018-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/135246
Pacini Naumovich, Elina Rocío; Iacono, Lucas Emanuel; Mateos Diaz, Cristian Maximiliano; Garcia Garino, Carlos Gabriel; A Bio-inspired Datacenter Selection Scheduler for Federated Clouds and its Application to Frost Prediction; Springer; Journal Of Network And Systems Management; 27; 3; 11-2018; 688-729
1064-7570
CONICET Digital
CONICET
url http://hdl.handle.net/11336/135246
identifier_str_mv Pacini Naumovich, Elina Rocío; Iacono, Lucas Emanuel; Mateos Diaz, Cristian Maximiliano; Garcia Garino, Carlos Gabriel; A Bio-inspired Datacenter Selection Scheduler for Federated Clouds and its Application to Frost Prediction; Springer; Journal Of Network And Systems Management; 27; 3; 11-2018; 688-729
1064-7570
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10922-018-9481-0
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10922-018-9481-0
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268934434193408
score 13.13397