An ACO-inspired algorithm for minimizing weighted flowtime in cloud-based parameter sweep experiments
- Autores
- Mateos Diaz, Cristian Maximiliano; Pacini Naumovich, Elina Rocío; Garcia Garino, Carlos Gabriel
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Parameter Sweep Experiments (PSEs) allow scientists and engineers to conduct experiments by running the same program code against different input data. This usually results in many jobs with high computational requirements. Thus, distributed environments, particularly Clouds, can be employed to fulfill these demands. However, job scheduling is challenging as it is an NP-complete problem. Recently, Cloud schedulers based on bio-inspired techniques-which work well in approximating problems with little input information-have been proposed. Unfortunately, existing proposals ignore job priorities, which is a very important aspect in PSEs since it allows accelerating PSE results processing and visualization in scientific Clouds. We present a new Cloud scheduler based on Ant Colony Optimization, the most popular bio-inspired technique, which also exploits well-known notions from operating systems theory. Simulated experiments performed with real PSE job data and other Cloud scheduling policies indicate that our proposal allows for a more agile job handling while reducing PSE completion time.
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Pacini Naumovich, Elina Rocío. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Garcia Garino, Carlos Gabriel. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
ANT COLONY OPTIMIZATION
CLOUD COMPUTING
JOB SCHEDULING
PARAMETER SWEEP EXPERIMENTS
SWARM INTELLIGENCE
WEIGHTED FLOWTIME - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/90999
Ver los metadatos del registro completo
id |
CONICETDig_a688d0e3734975c7d2aef2067ddadd41 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/90999 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An ACO-inspired algorithm for minimizing weighted flowtime in cloud-based parameter sweep experimentsMateos Diaz, Cristian MaximilianoPacini Naumovich, Elina RocíoGarcia Garino, Carlos GabrielANT COLONY OPTIMIZATIONCLOUD COMPUTINGJOB SCHEDULINGPARAMETER SWEEP EXPERIMENTSSWARM INTELLIGENCEWEIGHTED FLOWTIMEhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Parameter Sweep Experiments (PSEs) allow scientists and engineers to conduct experiments by running the same program code against different input data. This usually results in many jobs with high computational requirements. Thus, distributed environments, particularly Clouds, can be employed to fulfill these demands. However, job scheduling is challenging as it is an NP-complete problem. Recently, Cloud schedulers based on bio-inspired techniques-which work well in approximating problems with little input information-have been proposed. Unfortunately, existing proposals ignore job priorities, which is a very important aspect in PSEs since it allows accelerating PSE results processing and visualization in scientific Clouds. We present a new Cloud scheduler based on Ant Colony Optimization, the most popular bio-inspired technique, which also exploits well-known notions from operating systems theory. Simulated experiments performed with real PSE job data and other Cloud scheduling policies indicate that our proposal allows for a more agile job handling while reducing PSE completion time.Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Pacini Naumovich, Elina Rocío. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Garcia Garino, Carlos Gabriel. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2013-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/90999Mateos Diaz, Cristian Maximiliano; Pacini Naumovich, Elina Rocío; Garcia Garino, Carlos Gabriel; An ACO-inspired algorithm for minimizing weighted flowtime in cloud-based parameter sweep experiments; Elsevier; Advances in Engineering Software; 56; 2-2013; 38-500965-9978CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0965997812001585info:eu-repo/semantics/altIdentifier/doi/10.1016/j.advengsoft.2012.11.011info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:42Zoai:ri.conicet.gov.ar:11336/90999instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:42.657CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An ACO-inspired algorithm for minimizing weighted flowtime in cloud-based parameter sweep experiments |
title |
An ACO-inspired algorithm for minimizing weighted flowtime in cloud-based parameter sweep experiments |
spellingShingle |
An ACO-inspired algorithm for minimizing weighted flowtime in cloud-based parameter sweep experiments Mateos Diaz, Cristian Maximiliano ANT COLONY OPTIMIZATION CLOUD COMPUTING JOB SCHEDULING PARAMETER SWEEP EXPERIMENTS SWARM INTELLIGENCE WEIGHTED FLOWTIME |
title_short |
An ACO-inspired algorithm for minimizing weighted flowtime in cloud-based parameter sweep experiments |
title_full |
An ACO-inspired algorithm for minimizing weighted flowtime in cloud-based parameter sweep experiments |
title_fullStr |
An ACO-inspired algorithm for minimizing weighted flowtime in cloud-based parameter sweep experiments |
title_full_unstemmed |
An ACO-inspired algorithm for minimizing weighted flowtime in cloud-based parameter sweep experiments |
title_sort |
An ACO-inspired algorithm for minimizing weighted flowtime in cloud-based parameter sweep experiments |
dc.creator.none.fl_str_mv |
Mateos Diaz, Cristian Maximiliano Pacini Naumovich, Elina Rocío Garcia Garino, Carlos Gabriel |
author |
Mateos Diaz, Cristian Maximiliano |
author_facet |
Mateos Diaz, Cristian Maximiliano Pacini Naumovich, Elina Rocío Garcia Garino, Carlos Gabriel |
author_role |
author |
author2 |
Pacini Naumovich, Elina Rocío Garcia Garino, Carlos Gabriel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ANT COLONY OPTIMIZATION CLOUD COMPUTING JOB SCHEDULING PARAMETER SWEEP EXPERIMENTS SWARM INTELLIGENCE WEIGHTED FLOWTIME |
topic |
ANT COLONY OPTIMIZATION CLOUD COMPUTING JOB SCHEDULING PARAMETER SWEEP EXPERIMENTS SWARM INTELLIGENCE WEIGHTED FLOWTIME |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Parameter Sweep Experiments (PSEs) allow scientists and engineers to conduct experiments by running the same program code against different input data. This usually results in many jobs with high computational requirements. Thus, distributed environments, particularly Clouds, can be employed to fulfill these demands. However, job scheduling is challenging as it is an NP-complete problem. Recently, Cloud schedulers based on bio-inspired techniques-which work well in approximating problems with little input information-have been proposed. Unfortunately, existing proposals ignore job priorities, which is a very important aspect in PSEs since it allows accelerating PSE results processing and visualization in scientific Clouds. We present a new Cloud scheduler based on Ant Colony Optimization, the most popular bio-inspired technique, which also exploits well-known notions from operating systems theory. Simulated experiments performed with real PSE job data and other Cloud scheduling policies indicate that our proposal allows for a more agile job handling while reducing PSE completion time. Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Pacini Naumovich, Elina Rocío. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Garcia Garino, Carlos Gabriel. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Parameter Sweep Experiments (PSEs) allow scientists and engineers to conduct experiments by running the same program code against different input data. This usually results in many jobs with high computational requirements. Thus, distributed environments, particularly Clouds, can be employed to fulfill these demands. However, job scheduling is challenging as it is an NP-complete problem. Recently, Cloud schedulers based on bio-inspired techniques-which work well in approximating problems with little input information-have been proposed. Unfortunately, existing proposals ignore job priorities, which is a very important aspect in PSEs since it allows accelerating PSE results processing and visualization in scientific Clouds. We present a new Cloud scheduler based on Ant Colony Optimization, the most popular bio-inspired technique, which also exploits well-known notions from operating systems theory. Simulated experiments performed with real PSE job data and other Cloud scheduling policies indicate that our proposal allows for a more agile job handling while reducing PSE completion time. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/90999 Mateos Diaz, Cristian Maximiliano; Pacini Naumovich, Elina Rocío; Garcia Garino, Carlos Gabriel; An ACO-inspired algorithm for minimizing weighted flowtime in cloud-based parameter sweep experiments; Elsevier; Advances in Engineering Software; 56; 2-2013; 38-50 0965-9978 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/90999 |
identifier_str_mv |
Mateos Diaz, Cristian Maximiliano; Pacini Naumovich, Elina Rocío; Garcia Garino, Carlos Gabriel; An ACO-inspired algorithm for minimizing weighted flowtime in cloud-based parameter sweep experiments; Elsevier; Advances in Engineering Software; 56; 2-2013; 38-50 0965-9978 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0965997812001585 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.advengsoft.2012.11.011 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269815262150656 |
score |
13.13397 |