Towards distributed reasoning for behavioral optimization
- Autores
- Cebulla, Michael
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- We propose an architecture which supports the behavioral self-optimization of complex systems. In this architecture we bring together specification-based reasoning and the framework of ant colony optimization (ACO). By this we provide a foundation for distributed reasoning about different properties of the solution space represented by different viewpoint specifications. As a side-effect of reasoning we propagate the information about promising areas in the solution space to the current state. Consequently the system’s decisions can be improved by considering the long term values of certain behavioral trajectories (given a certain situational horizon). We consider this feature to be a contribution to autonomic computing
1st IFIP International Conference on Biologically Inspired Cooperative Computing - Biological Inspiration 1
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Ant Colony Optimization (ACO)
autonomic computing
Architectures
Optimization - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/24001
Ver los metadatos del registro completo
id |
SEDICI_6f34849cbfdeb928d4b2ac283a516555 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/24001 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Towards distributed reasoning for behavioral optimizationCebulla, MichaelCiencias InformáticasAnt Colony Optimization (ACO)autonomic computingArchitecturesOptimizationWe propose an architecture which supports the behavioral self-optimization of complex systems. In this architecture we bring together specification-based reasoning and the framework of ant colony optimization (ACO). By this we provide a foundation for distributed reasoning about different properties of the solution space represented by different viewpoint specifications. As a side-effect of reasoning we propagate the information about promising areas in the solution space to the current state. Consequently the system’s decisions can be improved by considering the long term values of certain behavioral trajectories (given a certain situational horizon). We consider this feature to be a contribution to autonomic computing1st IFIP International Conference on Biologically Inspired Cooperative Computing - Biological Inspiration 1Red de Universidades con Carreras en Informática (RedUNCI)2006-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/24001enginfo:eu-repo/semantics/altIdentifier/isbn/0-387-34632-5info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:48:18Zoai:sedici.unlp.edu.ar:10915/24001Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:48:19.226SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Towards distributed reasoning for behavioral optimization |
title |
Towards distributed reasoning for behavioral optimization |
spellingShingle |
Towards distributed reasoning for behavioral optimization Cebulla, Michael Ciencias Informáticas Ant Colony Optimization (ACO) autonomic computing Architectures Optimization |
title_short |
Towards distributed reasoning for behavioral optimization |
title_full |
Towards distributed reasoning for behavioral optimization |
title_fullStr |
Towards distributed reasoning for behavioral optimization |
title_full_unstemmed |
Towards distributed reasoning for behavioral optimization |
title_sort |
Towards distributed reasoning for behavioral optimization |
dc.creator.none.fl_str_mv |
Cebulla, Michael |
author |
Cebulla, Michael |
author_facet |
Cebulla, Michael |
author_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Ant Colony Optimization (ACO) autonomic computing Architectures Optimization |
topic |
Ciencias Informáticas Ant Colony Optimization (ACO) autonomic computing Architectures Optimization |
dc.description.none.fl_txt_mv |
We propose an architecture which supports the behavioral self-optimization of complex systems. In this architecture we bring together specification-based reasoning and the framework of ant colony optimization (ACO). By this we provide a foundation for distributed reasoning about different properties of the solution space represented by different viewpoint specifications. As a side-effect of reasoning we propagate the information about promising areas in the solution space to the current state. Consequently the system’s decisions can be improved by considering the long term values of certain behavioral trajectories (given a certain situational horizon). We consider this feature to be a contribution to autonomic computing 1st IFIP International Conference on Biologically Inspired Cooperative Computing - Biological Inspiration 1 Red de Universidades con Carreras en Informática (RedUNCI) |
description |
We propose an architecture which supports the behavioral self-optimization of complex systems. In this architecture we bring together specification-based reasoning and the framework of ant colony optimization (ACO). By this we provide a foundation for distributed reasoning about different properties of the solution space represented by different viewpoint specifications. As a side-effect of reasoning we propagate the information about promising areas in the solution space to the current state. Consequently the system’s decisions can be improved by considering the long term values of certain behavioral trajectories (given a certain situational horizon). We consider this feature to be a contribution to autonomic computing |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/24001 |
url |
http://sedici.unlp.edu.ar/handle/10915/24001 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/0-387-34632-5 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846063910763888640 |
score |
13.22299 |