Tight frame completions with prescribed norms
- Autores
- Massey, Pedro Gustavo; Ruiz, Mariano Andres
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let H be a finite dimensional (real or complex) Hilbert space and let {a_i} ∞_i=1. be a non-increasing sequence of positive numbers. Given a finite sequence of vectors F = {f_i}p_i=1 in H we find necessary and sufficient conditions for the existence of r ∈ N U {∞} and a Bessel sequence G = {g_i}r_i=1 in H such that F U G is a tight frame for H and || g_i ||^2 = a_i for every i. Moreover, in this case we compute the minimum r in NU {∞} with this property. We also describe algorithms that perform completions of a given set of vectors to tight frames.
Fil: Massey, Pedro Gustavo. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Ruiz, Mariano Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina - Materia
-
FRAME
TIGHT FRAME COMPLETIONS
MAJORIZATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/110304
Ver los metadatos del registro completo
id |
CONICETDig_04f600409f69d8a00d9a96c632772f8e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/110304 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Tight frame completions with prescribed normsMassey, Pedro GustavoRuiz, Mariano AndresFRAMETIGHT FRAME COMPLETIONSMAJORIZATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let H be a finite dimensional (real or complex) Hilbert space and let {a_i} ∞_i=1. be a non-increasing sequence of positive numbers. Given a finite sequence of vectors F = {f_i}p_i=1 in H we find necessary and sufficient conditions for the existence of r ∈ N U {∞} and a Bessel sequence G = {g_i}r_i=1 in H such that F U G is a tight frame for H and || g_i ||^2 = a_i for every i. Moreover, in this case we compute the minimum r in NU {∞} with this property. We also describe algorithms that perform completions of a given set of vectors to tight frames.Fil: Massey, Pedro Gustavo. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Ruiz, Mariano Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; ArgentinaSampling Publishing2008-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/110304Massey, Pedro Gustavo; Ruiz, Mariano Andres; Tight frame completions with prescribed norms; Sampling Publishing ; Sampling Theory in Signal and Image Processing; 7; 1; 1-2008; 1-131530-6429CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://stsip.org/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:20:56Zoai:ri.conicet.gov.ar:11336/110304instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:20:57.102CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Tight frame completions with prescribed norms |
title |
Tight frame completions with prescribed norms |
spellingShingle |
Tight frame completions with prescribed norms Massey, Pedro Gustavo FRAME TIGHT FRAME COMPLETIONS MAJORIZATION |
title_short |
Tight frame completions with prescribed norms |
title_full |
Tight frame completions with prescribed norms |
title_fullStr |
Tight frame completions with prescribed norms |
title_full_unstemmed |
Tight frame completions with prescribed norms |
title_sort |
Tight frame completions with prescribed norms |
dc.creator.none.fl_str_mv |
Massey, Pedro Gustavo Ruiz, Mariano Andres |
author |
Massey, Pedro Gustavo |
author_facet |
Massey, Pedro Gustavo Ruiz, Mariano Andres |
author_role |
author |
author2 |
Ruiz, Mariano Andres |
author2_role |
author |
dc.subject.none.fl_str_mv |
FRAME TIGHT FRAME COMPLETIONS MAJORIZATION |
topic |
FRAME TIGHT FRAME COMPLETIONS MAJORIZATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let H be a finite dimensional (real or complex) Hilbert space and let {a_i} ∞_i=1. be a non-increasing sequence of positive numbers. Given a finite sequence of vectors F = {f_i}p_i=1 in H we find necessary and sufficient conditions for the existence of r ∈ N U {∞} and a Bessel sequence G = {g_i}r_i=1 in H such that F U G is a tight frame for H and || g_i ||^2 = a_i for every i. Moreover, in this case we compute the minimum r in NU {∞} with this property. We also describe algorithms that perform completions of a given set of vectors to tight frames. Fil: Massey, Pedro Gustavo. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Ruiz, Mariano Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina |
description |
Let H be a finite dimensional (real or complex) Hilbert space and let {a_i} ∞_i=1. be a non-increasing sequence of positive numbers. Given a finite sequence of vectors F = {f_i}p_i=1 in H we find necessary and sufficient conditions for the existence of r ∈ N U {∞} and a Bessel sequence G = {g_i}r_i=1 in H such that F U G is a tight frame for H and || g_i ||^2 = a_i for every i. Moreover, in this case we compute the minimum r in NU {∞} with this property. We also describe algorithms that perform completions of a given set of vectors to tight frames. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/110304 Massey, Pedro Gustavo; Ruiz, Mariano Andres; Tight frame completions with prescribed norms; Sampling Publishing ; Sampling Theory in Signal and Image Processing; 7; 1; 1-2008; 1-13 1530-6429 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/110304 |
identifier_str_mv |
Massey, Pedro Gustavo; Ruiz, Mariano Andres; Tight frame completions with prescribed norms; Sampling Publishing ; Sampling Theory in Signal and Image Processing; 7; 1; 1-2008; 1-13 1530-6429 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://stsip.org/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Sampling Publishing |
publisher.none.fl_str_mv |
Sampling Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981146890076160 |
score |
12.48226 |