Tight frame completions with prescribed norms
- Autores
- Massey, Pedro Gustavo; Ruiz, Mariano Andres
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let H be a finite dimensional (real or complex) Hilbert space and let {a_i} ∞_i=1. be a non-increasing sequence of positive numbers. Given a finite sequence of vectors F = {f_i}p_i=1 in H we find necessary and sufficient conditions for the existence of r ∈ N U {∞} and a Bessel sequence G = {g_i}r_i=1 in H such that F U G is a tight frame for H and || g_i ||^2 = a_i for every i. Moreover, in this case we compute the minimum r in NU {∞} with this property. We also describe algorithms that perform completions of a given set of vectors to tight frames.
Fil: Massey, Pedro Gustavo. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Ruiz, Mariano Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina - Materia
-
FRAME
TIGHT FRAME COMPLETIONS
MAJORIZATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/110304
Ver los metadatos del registro completo
| id |
CONICETDig_04f600409f69d8a00d9a96c632772f8e |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/110304 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Tight frame completions with prescribed normsMassey, Pedro GustavoRuiz, Mariano AndresFRAMETIGHT FRAME COMPLETIONSMAJORIZATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let H be a finite dimensional (real or complex) Hilbert space and let {a_i} ∞_i=1. be a non-increasing sequence of positive numbers. Given a finite sequence of vectors F = {f_i}p_i=1 in H we find necessary and sufficient conditions for the existence of r ∈ N U {∞} and a Bessel sequence G = {g_i}r_i=1 in H such that F U G is a tight frame for H and || g_i ||^2 = a_i for every i. Moreover, in this case we compute the minimum r in NU {∞} with this property. We also describe algorithms that perform completions of a given set of vectors to tight frames.Fil: Massey, Pedro Gustavo. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Ruiz, Mariano Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; ArgentinaSampling Publishing2008-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/110304Massey, Pedro Gustavo; Ruiz, Mariano Andres; Tight frame completions with prescribed norms; Sampling Publishing ; Sampling Theory in Signal and Image Processing; 7; 1; 1-2008; 1-131530-6429CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://stsip.org/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-26T09:07:40Zoai:ri.conicet.gov.ar:11336/110304instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-26 09:07:40.688CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Tight frame completions with prescribed norms |
| title |
Tight frame completions with prescribed norms |
| spellingShingle |
Tight frame completions with prescribed norms Massey, Pedro Gustavo FRAME TIGHT FRAME COMPLETIONS MAJORIZATION |
| title_short |
Tight frame completions with prescribed norms |
| title_full |
Tight frame completions with prescribed norms |
| title_fullStr |
Tight frame completions with prescribed norms |
| title_full_unstemmed |
Tight frame completions with prescribed norms |
| title_sort |
Tight frame completions with prescribed norms |
| dc.creator.none.fl_str_mv |
Massey, Pedro Gustavo Ruiz, Mariano Andres |
| author |
Massey, Pedro Gustavo |
| author_facet |
Massey, Pedro Gustavo Ruiz, Mariano Andres |
| author_role |
author |
| author2 |
Ruiz, Mariano Andres |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
FRAME TIGHT FRAME COMPLETIONS MAJORIZATION |
| topic |
FRAME TIGHT FRAME COMPLETIONS MAJORIZATION |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Let H be a finite dimensional (real or complex) Hilbert space and let {a_i} ∞_i=1. be a non-increasing sequence of positive numbers. Given a finite sequence of vectors F = {f_i}p_i=1 in H we find necessary and sufficient conditions for the existence of r ∈ N U {∞} and a Bessel sequence G = {g_i}r_i=1 in H such that F U G is a tight frame for H and || g_i ||^2 = a_i for every i. Moreover, in this case we compute the minimum r in NU {∞} with this property. We also describe algorithms that perform completions of a given set of vectors to tight frames. Fil: Massey, Pedro Gustavo. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Ruiz, Mariano Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina |
| description |
Let H be a finite dimensional (real or complex) Hilbert space and let {a_i} ∞_i=1. be a non-increasing sequence of positive numbers. Given a finite sequence of vectors F = {f_i}p_i=1 in H we find necessary and sufficient conditions for the existence of r ∈ N U {∞} and a Bessel sequence G = {g_i}r_i=1 in H such that F U G is a tight frame for H and || g_i ||^2 = a_i for every i. Moreover, in this case we compute the minimum r in NU {∞} with this property. We also describe algorithms that perform completions of a given set of vectors to tight frames. |
| publishDate |
2008 |
| dc.date.none.fl_str_mv |
2008-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/110304 Massey, Pedro Gustavo; Ruiz, Mariano Andres; Tight frame completions with prescribed norms; Sampling Publishing ; Sampling Theory in Signal and Image Processing; 7; 1; 1-2008; 1-13 1530-6429 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/110304 |
| identifier_str_mv |
Massey, Pedro Gustavo; Ruiz, Mariano Andres; Tight frame completions with prescribed norms; Sampling Publishing ; Sampling Theory in Signal and Image Processing; 7; 1; 1-2008; 1-13 1530-6429 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://stsip.org/ |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Sampling Publishing |
| publisher.none.fl_str_mv |
Sampling Publishing |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1849873537861419008 |
| score |
13.011256 |