An integral relationship for a fractional one-phase Stefan problem

Autores
Roscani, Sabrina Dina; Tarzia, Domingo Alberto
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A one-dimensional fractional one-phase Stefan problem with a temperature boundary condition at the fixed face is considered by using the Riemann–Liouville derivative. This formulation is more convenient than the one given in Roscani and Santillan (Fract. Calc. Appl. Anal., 16, No 4 (2013), 802–815) and Tarzia and Ceretani (Fract. Calc. Appl. Anal., 20, No 2 (2017), 399–421), because it allows us to work with Green’s identities (which does not apply when Caputo derivatives are considered). As a main result, an integral relationship between the temperature and the free boundary is obtained which is equivalent to the fractional Stefan condition. Moreover, an exact solution of similarity type expressed in terms of Wright functions is also given.
Fil: Roscani, Sabrina Dina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
Materia
STEFAN PROBLEM
FRACTIONAL HEAT EQUATION
RIEMANN-LIOUVILLE DERIVATIVE
EQUVALENT INTEGRAL RELATIONSHIP
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/102721

id CONICETDig_824669a50a4e42dcb06fdc7d73e4afb8
oai_identifier_str oai:ri.conicet.gov.ar:11336/102721
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling An integral relationship for a fractional one-phase Stefan problemRoscani, Sabrina DinaTarzia, Domingo AlbertoSTEFAN PROBLEMFRACTIONAL HEAT EQUATIONRIEMANN-LIOUVILLE DERIVATIVEEQUVALENT INTEGRAL RELATIONSHIPhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A one-dimensional fractional one-phase Stefan problem with a temperature boundary condition at the fixed face is considered by using the Riemann–Liouville derivative. This formulation is more convenient than the one given in Roscani and Santillan (Fract. Calc. Appl. Anal., 16, No 4 (2013), 802–815) and Tarzia and Ceretani (Fract. Calc. Appl. Anal., 20, No 2 (2017), 399–421), because it allows us to work with Green’s identities (which does not apply when Caputo derivatives are considered). As a main result, an integral relationship between the temperature and the free boundary is obtained which is equivalent to the fractional Stefan condition. Moreover, an exact solution of similarity type expressed in terms of Wright functions is also given.Fil: Roscani, Sabrina Dina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; ArgentinaFil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaDe Gruyter2018-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/102721Roscani, Sabrina Dina; Tarzia, Domingo Alberto; An integral relationship for a fractional one-phase Stefan problem; De Gruyter; Fractional Calculus and Applied Analysis; 21; 4; 8-2018; 901-9181311-04541314-2224CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/journals/fca/21/4/article-p901.xmlinfo:eu-repo/semantics/altIdentifier/doi/10.1515/fca-2018-0049info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:17:08Zoai:ri.conicet.gov.ar:11336/102721instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:17:09.176CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv An integral relationship for a fractional one-phase Stefan problem
title An integral relationship for a fractional one-phase Stefan problem
spellingShingle An integral relationship for a fractional one-phase Stefan problem
Roscani, Sabrina Dina
STEFAN PROBLEM
FRACTIONAL HEAT EQUATION
RIEMANN-LIOUVILLE DERIVATIVE
EQUVALENT INTEGRAL RELATIONSHIP
title_short An integral relationship for a fractional one-phase Stefan problem
title_full An integral relationship for a fractional one-phase Stefan problem
title_fullStr An integral relationship for a fractional one-phase Stefan problem
title_full_unstemmed An integral relationship for a fractional one-phase Stefan problem
title_sort An integral relationship for a fractional one-phase Stefan problem
dc.creator.none.fl_str_mv Roscani, Sabrina Dina
Tarzia, Domingo Alberto
author Roscani, Sabrina Dina
author_facet Roscani, Sabrina Dina
Tarzia, Domingo Alberto
author_role author
author2 Tarzia, Domingo Alberto
author2_role author
dc.subject.none.fl_str_mv STEFAN PROBLEM
FRACTIONAL HEAT EQUATION
RIEMANN-LIOUVILLE DERIVATIVE
EQUVALENT INTEGRAL RELATIONSHIP
topic STEFAN PROBLEM
FRACTIONAL HEAT EQUATION
RIEMANN-LIOUVILLE DERIVATIVE
EQUVALENT INTEGRAL RELATIONSHIP
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A one-dimensional fractional one-phase Stefan problem with a temperature boundary condition at the fixed face is considered by using the Riemann–Liouville derivative. This formulation is more convenient than the one given in Roscani and Santillan (Fract. Calc. Appl. Anal., 16, No 4 (2013), 802–815) and Tarzia and Ceretani (Fract. Calc. Appl. Anal., 20, No 2 (2017), 399–421), because it allows us to work with Green’s identities (which does not apply when Caputo derivatives are considered). As a main result, an integral relationship between the temperature and the free boundary is obtained which is equivalent to the fractional Stefan condition. Moreover, an exact solution of similarity type expressed in terms of Wright functions is also given.
Fil: Roscani, Sabrina Dina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
description A one-dimensional fractional one-phase Stefan problem with a temperature boundary condition at the fixed face is considered by using the Riemann–Liouville derivative. This formulation is more convenient than the one given in Roscani and Santillan (Fract. Calc. Appl. Anal., 16, No 4 (2013), 802–815) and Tarzia and Ceretani (Fract. Calc. Appl. Anal., 20, No 2 (2017), 399–421), because it allows us to work with Green’s identities (which does not apply when Caputo derivatives are considered). As a main result, an integral relationship between the temperature and the free boundary is obtained which is equivalent to the fractional Stefan condition. Moreover, an exact solution of similarity type expressed in terms of Wright functions is also given.
publishDate 2018
dc.date.none.fl_str_mv 2018-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/102721
Roscani, Sabrina Dina; Tarzia, Domingo Alberto; An integral relationship for a fractional one-phase Stefan problem; De Gruyter; Fractional Calculus and Applied Analysis; 21; 4; 8-2018; 901-918
1311-0454
1314-2224
CONICET Digital
CONICET
url http://hdl.handle.net/11336/102721
identifier_str_mv Roscani, Sabrina Dina; Tarzia, Domingo Alberto; An integral relationship for a fractional one-phase Stefan problem; De Gruyter; Fractional Calculus and Applied Analysis; 21; 4; 8-2018; 901-918
1311-0454
1314-2224
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/journals/fca/21/4/article-p901.xml
info:eu-repo/semantics/altIdentifier/doi/10.1515/fca-2018-0049
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv De Gruyter
publisher.none.fl_str_mv De Gruyter
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980937722232832
score 12.993085