An integral relationship for a fractional one-phase Stefan problem
- Autores
- Roscani, Sabrina Dina; Tarzia, Domingo Alberto
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A one-dimensional fractional one-phase Stefan problem with a temperature boundary condition at the fixed face is considered by using the Riemann–Liouville derivative. This formulation is more convenient than the one given in Roscani and Santillan (Fract. Calc. Appl. Anal., 16, No 4 (2013), 802–815) and Tarzia and Ceretani (Fract. Calc. Appl. Anal., 20, No 2 (2017), 399–421), because it allows us to work with Green’s identities (which does not apply when Caputo derivatives are considered). As a main result, an integral relationship between the temperature and the free boundary is obtained which is equivalent to the fractional Stefan condition. Moreover, an exact solution of similarity type expressed in terms of Wright functions is also given.
Fil: Roscani, Sabrina Dina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina - Materia
-
STEFAN PROBLEM
FRACTIONAL HEAT EQUATION
RIEMANN-LIOUVILLE DERIVATIVE
EQUVALENT INTEGRAL RELATIONSHIP - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/102721
Ver los metadatos del registro completo
id |
CONICETDig_824669a50a4e42dcb06fdc7d73e4afb8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/102721 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An integral relationship for a fractional one-phase Stefan problemRoscani, Sabrina DinaTarzia, Domingo AlbertoSTEFAN PROBLEMFRACTIONAL HEAT EQUATIONRIEMANN-LIOUVILLE DERIVATIVEEQUVALENT INTEGRAL RELATIONSHIPhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A one-dimensional fractional one-phase Stefan problem with a temperature boundary condition at the fixed face is considered by using the Riemann–Liouville derivative. This formulation is more convenient than the one given in Roscani and Santillan (Fract. Calc. Appl. Anal., 16, No 4 (2013), 802–815) and Tarzia and Ceretani (Fract. Calc. Appl. Anal., 20, No 2 (2017), 399–421), because it allows us to work with Green’s identities (which does not apply when Caputo derivatives are considered). As a main result, an integral relationship between the temperature and the free boundary is obtained which is equivalent to the fractional Stefan condition. Moreover, an exact solution of similarity type expressed in terms of Wright functions is also given.Fil: Roscani, Sabrina Dina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; ArgentinaFil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaDe Gruyter2018-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/102721Roscani, Sabrina Dina; Tarzia, Domingo Alberto; An integral relationship for a fractional one-phase Stefan problem; De Gruyter; Fractional Calculus and Applied Analysis; 21; 4; 8-2018; 901-9181311-04541314-2224CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/journals/fca/21/4/article-p901.xmlinfo:eu-repo/semantics/altIdentifier/doi/10.1515/fca-2018-0049info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:17:08Zoai:ri.conicet.gov.ar:11336/102721instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:17:09.176CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An integral relationship for a fractional one-phase Stefan problem |
title |
An integral relationship for a fractional one-phase Stefan problem |
spellingShingle |
An integral relationship for a fractional one-phase Stefan problem Roscani, Sabrina Dina STEFAN PROBLEM FRACTIONAL HEAT EQUATION RIEMANN-LIOUVILLE DERIVATIVE EQUVALENT INTEGRAL RELATIONSHIP |
title_short |
An integral relationship for a fractional one-phase Stefan problem |
title_full |
An integral relationship for a fractional one-phase Stefan problem |
title_fullStr |
An integral relationship for a fractional one-phase Stefan problem |
title_full_unstemmed |
An integral relationship for a fractional one-phase Stefan problem |
title_sort |
An integral relationship for a fractional one-phase Stefan problem |
dc.creator.none.fl_str_mv |
Roscani, Sabrina Dina Tarzia, Domingo Alberto |
author |
Roscani, Sabrina Dina |
author_facet |
Roscani, Sabrina Dina Tarzia, Domingo Alberto |
author_role |
author |
author2 |
Tarzia, Domingo Alberto |
author2_role |
author |
dc.subject.none.fl_str_mv |
STEFAN PROBLEM FRACTIONAL HEAT EQUATION RIEMANN-LIOUVILLE DERIVATIVE EQUVALENT INTEGRAL RELATIONSHIP |
topic |
STEFAN PROBLEM FRACTIONAL HEAT EQUATION RIEMANN-LIOUVILLE DERIVATIVE EQUVALENT INTEGRAL RELATIONSHIP |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A one-dimensional fractional one-phase Stefan problem with a temperature boundary condition at the fixed face is considered by using the Riemann–Liouville derivative. This formulation is more convenient than the one given in Roscani and Santillan (Fract. Calc. Appl. Anal., 16, No 4 (2013), 802–815) and Tarzia and Ceretani (Fract. Calc. Appl. Anal., 20, No 2 (2017), 399–421), because it allows us to work with Green’s identities (which does not apply when Caputo derivatives are considered). As a main result, an integral relationship between the temperature and the free boundary is obtained which is equivalent to the fractional Stefan condition. Moreover, an exact solution of similarity type expressed in terms of Wright functions is also given. Fil: Roscani, Sabrina Dina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina |
description |
A one-dimensional fractional one-phase Stefan problem with a temperature boundary condition at the fixed face is considered by using the Riemann–Liouville derivative. This formulation is more convenient than the one given in Roscani and Santillan (Fract. Calc. Appl. Anal., 16, No 4 (2013), 802–815) and Tarzia and Ceretani (Fract. Calc. Appl. Anal., 20, No 2 (2017), 399–421), because it allows us to work with Green’s identities (which does not apply when Caputo derivatives are considered). As a main result, an integral relationship between the temperature and the free boundary is obtained which is equivalent to the fractional Stefan condition. Moreover, an exact solution of similarity type expressed in terms of Wright functions is also given. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/102721 Roscani, Sabrina Dina; Tarzia, Domingo Alberto; An integral relationship for a fractional one-phase Stefan problem; De Gruyter; Fractional Calculus and Applied Analysis; 21; 4; 8-2018; 901-918 1311-0454 1314-2224 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/102721 |
identifier_str_mv |
Roscani, Sabrina Dina; Tarzia, Domingo Alberto; An integral relationship for a fractional one-phase Stefan problem; De Gruyter; Fractional Calculus and Applied Analysis; 21; 4; 8-2018; 901-918 1311-0454 1314-2224 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/journals/fca/21/4/article-p901.xml info:eu-repo/semantics/altIdentifier/doi/10.1515/fca-2018-0049 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter |
publisher.none.fl_str_mv |
De Gruyter |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980937722232832 |
score |
12.993085 |