Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting

Autores
Acinas, Sonia Ester; Buri, L.; Giubergia, Graciela Olga; Mazzone, Fernando Dario; Schwindt, Erica Leticia
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we consider the problem of finding periodic solutions of certain Euler-Lagrange equations. We employ the direct method of the calculus of variations, i.e. we obtain solutions minimizing certain functional I. We give conditions which ensure that I is finitely defined and differentiable on certain subsets of Orlicz-Sobolev spaces W1L Φ associated to an N-function Φ. We show that, in some sense, it is necessary for the coercitivity that the complementary function of Φ satisfy the ∆2-condition. We conclude by discussing conditions for the existence of minima of I.
Fil: Acinas, Sonia Ester. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis ; Argentina. Universidad Nacional de La Pampa; Argentina
Fil: Buri, L.. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina
Fil: Giubergia, Graciela Olga. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina
Fil: Mazzone, Fernando Dario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina
Fil: Schwindt, Erica Leticia. Université d’Orléans; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Periodic Solution
Orlicz-Sobolev Spaces
Euler-Lagrange
N-Function
Critical Points
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/50482

id CONICETDig_819f7456f07aa3a7345a262e11400ad8
oai_identifier_str oai:ri.conicet.gov.ar:11336/50482
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space settingAcinas, Sonia EsterBuri, L.Giubergia, Graciela OlgaMazzone, Fernando DarioSchwindt, Erica LeticiaPeriodic SolutionOrlicz-Sobolev SpacesEuler-LagrangeN-FunctionCritical Pointshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we consider the problem of finding periodic solutions of certain Euler-Lagrange equations. We employ the direct method of the calculus of variations, i.e. we obtain solutions minimizing certain functional I. We give conditions which ensure that I is finitely defined and differentiable on certain subsets of Orlicz-Sobolev spaces W1L Φ associated to an N-function Φ. We show that, in some sense, it is necessary for the coercitivity that the complementary function of Φ satisfy the ∆2-condition. We conclude by discussing conditions for the existence of minima of I.Fil: Acinas, Sonia Ester. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis ; Argentina. Universidad Nacional de La Pampa; ArgentinaFil: Buri, L.. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; ArgentinaFil: Giubergia, Graciela Olga. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; ArgentinaFil: Mazzone, Fernando Dario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; ArgentinaFil: Schwindt, Erica Leticia. Université d’Orléans; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaPergamon-Elsevier Science Ltd2015-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/50482Acinas, Sonia Ester; Buri, L.; Giubergia, Graciela Olga; Mazzone, Fernando Dario; Schwindt, Erica Leticia; Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting; Pergamon-Elsevier Science Ltd; Journal Of Nonlinear Analysis; 125; 9-2015; 681-6980362-546XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.na.2015.06.013info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0362546X15002102info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:21Zoai:ri.conicet.gov.ar:11336/50482instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:21.803CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting
title Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting
spellingShingle Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting
Acinas, Sonia Ester
Periodic Solution
Orlicz-Sobolev Spaces
Euler-Lagrange
N-Function
Critical Points
title_short Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting
title_full Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting
title_fullStr Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting
title_full_unstemmed Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting
title_sort Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting
dc.creator.none.fl_str_mv Acinas, Sonia Ester
Buri, L.
Giubergia, Graciela Olga
Mazzone, Fernando Dario
Schwindt, Erica Leticia
author Acinas, Sonia Ester
author_facet Acinas, Sonia Ester
Buri, L.
Giubergia, Graciela Olga
Mazzone, Fernando Dario
Schwindt, Erica Leticia
author_role author
author2 Buri, L.
Giubergia, Graciela Olga
Mazzone, Fernando Dario
Schwindt, Erica Leticia
author2_role author
author
author
author
dc.subject.none.fl_str_mv Periodic Solution
Orlicz-Sobolev Spaces
Euler-Lagrange
N-Function
Critical Points
topic Periodic Solution
Orlicz-Sobolev Spaces
Euler-Lagrange
N-Function
Critical Points
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we consider the problem of finding periodic solutions of certain Euler-Lagrange equations. We employ the direct method of the calculus of variations, i.e. we obtain solutions minimizing certain functional I. We give conditions which ensure that I is finitely defined and differentiable on certain subsets of Orlicz-Sobolev spaces W1L Φ associated to an N-function Φ. We show that, in some sense, it is necessary for the coercitivity that the complementary function of Φ satisfy the ∆2-condition. We conclude by discussing conditions for the existence of minima of I.
Fil: Acinas, Sonia Ester. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis ; Argentina. Universidad Nacional de La Pampa; Argentina
Fil: Buri, L.. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina
Fil: Giubergia, Graciela Olga. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina
Fil: Mazzone, Fernando Dario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina
Fil: Schwindt, Erica Leticia. Université d’Orléans; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description In this paper we consider the problem of finding periodic solutions of certain Euler-Lagrange equations. We employ the direct method of the calculus of variations, i.e. we obtain solutions minimizing certain functional I. We give conditions which ensure that I is finitely defined and differentiable on certain subsets of Orlicz-Sobolev spaces W1L Φ associated to an N-function Φ. We show that, in some sense, it is necessary for the coercitivity that the complementary function of Φ satisfy the ∆2-condition. We conclude by discussing conditions for the existence of minima of I.
publishDate 2015
dc.date.none.fl_str_mv 2015-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/50482
Acinas, Sonia Ester; Buri, L.; Giubergia, Graciela Olga; Mazzone, Fernando Dario; Schwindt, Erica Leticia; Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting; Pergamon-Elsevier Science Ltd; Journal Of Nonlinear Analysis; 125; 9-2015; 681-698
0362-546X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/50482
identifier_str_mv Acinas, Sonia Ester; Buri, L.; Giubergia, Graciela Olga; Mazzone, Fernando Dario; Schwindt, Erica Leticia; Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting; Pergamon-Elsevier Science Ltd; Journal Of Nonlinear Analysis; 125; 9-2015; 681-698
0362-546X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.na.2015.06.013
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0362546X15002102
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269090789457920
score 13.13397