Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting
- Autores
- Acinas, Sonia Ester; Buri, L.; Giubergia, Graciela Olga; Mazzone, Fernando Dario; Schwindt, Erica Leticia
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we consider the problem of finding periodic solutions of certain Euler-Lagrange equations. We employ the direct method of the calculus of variations, i.e. we obtain solutions minimizing certain functional I. We give conditions which ensure that I is finitely defined and differentiable on certain subsets of Orlicz-Sobolev spaces W1L Φ associated to an N-function Φ. We show that, in some sense, it is necessary for the coercitivity that the complementary function of Φ satisfy the ∆2-condition. We conclude by discussing conditions for the existence of minima of I.
Fil: Acinas, Sonia Ester. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis ; Argentina. Universidad Nacional de La Pampa; Argentina
Fil: Buri, L.. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina
Fil: Giubergia, Graciela Olga. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina
Fil: Mazzone, Fernando Dario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina
Fil: Schwindt, Erica Leticia. Université d’Orléans; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Periodic Solution
Orlicz-Sobolev Spaces
Euler-Lagrange
N-Function
Critical Points - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/50482
Ver los metadatos del registro completo
id |
CONICETDig_819f7456f07aa3a7345a262e11400ad8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/50482 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space settingAcinas, Sonia EsterBuri, L.Giubergia, Graciela OlgaMazzone, Fernando DarioSchwindt, Erica LeticiaPeriodic SolutionOrlicz-Sobolev SpacesEuler-LagrangeN-FunctionCritical Pointshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we consider the problem of finding periodic solutions of certain Euler-Lagrange equations. We employ the direct method of the calculus of variations, i.e. we obtain solutions minimizing certain functional I. We give conditions which ensure that I is finitely defined and differentiable on certain subsets of Orlicz-Sobolev spaces W1L Φ associated to an N-function Φ. We show that, in some sense, it is necessary for the coercitivity that the complementary function of Φ satisfy the ∆2-condition. We conclude by discussing conditions for the existence of minima of I.Fil: Acinas, Sonia Ester. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis ; Argentina. Universidad Nacional de La Pampa; ArgentinaFil: Buri, L.. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; ArgentinaFil: Giubergia, Graciela Olga. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; ArgentinaFil: Mazzone, Fernando Dario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; ArgentinaFil: Schwindt, Erica Leticia. Université d’Orléans; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaPergamon-Elsevier Science Ltd2015-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/50482Acinas, Sonia Ester; Buri, L.; Giubergia, Graciela Olga; Mazzone, Fernando Dario; Schwindt, Erica Leticia; Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting; Pergamon-Elsevier Science Ltd; Journal Of Nonlinear Analysis; 125; 9-2015; 681-6980362-546XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.na.2015.06.013info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0362546X15002102info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:21Zoai:ri.conicet.gov.ar:11336/50482instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:21.803CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting |
title |
Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting |
spellingShingle |
Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting Acinas, Sonia Ester Periodic Solution Orlicz-Sobolev Spaces Euler-Lagrange N-Function Critical Points |
title_short |
Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting |
title_full |
Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting |
title_fullStr |
Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting |
title_full_unstemmed |
Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting |
title_sort |
Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting |
dc.creator.none.fl_str_mv |
Acinas, Sonia Ester Buri, L. Giubergia, Graciela Olga Mazzone, Fernando Dario Schwindt, Erica Leticia |
author |
Acinas, Sonia Ester |
author_facet |
Acinas, Sonia Ester Buri, L. Giubergia, Graciela Olga Mazzone, Fernando Dario Schwindt, Erica Leticia |
author_role |
author |
author2 |
Buri, L. Giubergia, Graciela Olga Mazzone, Fernando Dario Schwindt, Erica Leticia |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Periodic Solution Orlicz-Sobolev Spaces Euler-Lagrange N-Function Critical Points |
topic |
Periodic Solution Orlicz-Sobolev Spaces Euler-Lagrange N-Function Critical Points |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we consider the problem of finding periodic solutions of certain Euler-Lagrange equations. We employ the direct method of the calculus of variations, i.e. we obtain solutions minimizing certain functional I. We give conditions which ensure that I is finitely defined and differentiable on certain subsets of Orlicz-Sobolev spaces W1L Φ associated to an N-function Φ. We show that, in some sense, it is necessary for the coercitivity that the complementary function of Φ satisfy the ∆2-condition. We conclude by discussing conditions for the existence of minima of I. Fil: Acinas, Sonia Ester. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis ; Argentina. Universidad Nacional de La Pampa; Argentina Fil: Buri, L.. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina Fil: Giubergia, Graciela Olga. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina Fil: Mazzone, Fernando Dario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina Fil: Schwindt, Erica Leticia. Université d’Orléans; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
In this paper we consider the problem of finding periodic solutions of certain Euler-Lagrange equations. We employ the direct method of the calculus of variations, i.e. we obtain solutions minimizing certain functional I. We give conditions which ensure that I is finitely defined and differentiable on certain subsets of Orlicz-Sobolev spaces W1L Φ associated to an N-function Φ. We show that, in some sense, it is necessary for the coercitivity that the complementary function of Φ satisfy the ∆2-condition. We conclude by discussing conditions for the existence of minima of I. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/50482 Acinas, Sonia Ester; Buri, L.; Giubergia, Graciela Olga; Mazzone, Fernando Dario; Schwindt, Erica Leticia; Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting; Pergamon-Elsevier Science Ltd; Journal Of Nonlinear Analysis; 125; 9-2015; 681-698 0362-546X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/50482 |
identifier_str_mv |
Acinas, Sonia Ester; Buri, L.; Giubergia, Graciela Olga; Mazzone, Fernando Dario; Schwindt, Erica Leticia; Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting; Pergamon-Elsevier Science Ltd; Journal Of Nonlinear Analysis; 125; 9-2015; 681-698 0362-546X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.na.2015.06.013 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0362546X15002102 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269090789457920 |
score |
13.13397 |