Discrete Lagrange-d'Alembert-Poincaré equations for Euler's disk
- Autores
- Campo, Cédric M.; Cendra, Hernan; Diaz, Viviana Alejandra; de Diego, David Martín
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Nonholonomic systems are described by the Lagrange-d’Alembert principle. The presence of symmetry leads to a reduced d’Alembert principle and to the Lagrange-d’Alembert-Poincaré equations. First, we briefly recall from previous works how to obtain these reduced equations for the case of a thick disk rolling on a rough surface using a three-dimensional abelian group of symmetries. The main results of the present paper are the calculation of the discrete Lagrange-d’Alembert-Poincaré equations for an Euler’s disk and the numerical simulation of a trajectory and its energy behavior.
Fil: Campo, Cédric M.. Universidad Autónoma de Madrid; España
Fil: Cendra, Hernan. Universidad Nacional del Sur; Argentina
Fil: Diaz, Viviana Alejandra. Universidad Nacional del Sur; Argentina
Fil: de Diego, David Martín. Universidad Autónoma de Madrid; España - Materia
-
EULER'S DISK
DISCRETE EQUATIONS
SIMULATIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/195690
Ver los metadatos del registro completo
id |
CONICETDig_4a95d80e491cb43a737e92fe659f57b4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/195690 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Discrete Lagrange-d'Alembert-Poincaré equations for Euler's diskCampo, Cédric M.Cendra, HernanDiaz, Viviana Alejandrade Diego, David MartínEULER'S DISKDISCRETE EQUATIONSSIMULATIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Nonholonomic systems are described by the Lagrange-d’Alembert principle. The presence of symmetry leads to a reduced d’Alembert principle and to the Lagrange-d’Alembert-Poincaré equations. First, we briefly recall from previous works how to obtain these reduced equations for the case of a thick disk rolling on a rough surface using a three-dimensional abelian group of symmetries. The main results of the present paper are the calculation of the discrete Lagrange-d’Alembert-Poincaré equations for an Euler’s disk and the numerical simulation of a trajectory and its energy behavior.Fil: Campo, Cédric M.. Universidad Autónoma de Madrid; EspañaFil: Cendra, Hernan. Universidad Nacional del Sur; ArgentinaFil: Diaz, Viviana Alejandra. Universidad Nacional del Sur; ArgentinaFil: de Diego, David Martín. Universidad Autónoma de Madrid; EspañaReal Academia Ciencias Exactas Fisicas y Naturales2011-11-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/195690Campo, Cédric M.; Cendra, Hernan; Diaz, Viviana Alejandra; de Diego, David Martín; Discrete Lagrange-d'Alembert-Poincaré equations for Euler's disk; Real Academia Ciencias Exactas Fisicas y Naturales; Revista de la Real Academia de Ciencias Exactas Fisicas y Naturales Serie A-matematicas; 106; 1; 18-11-2011; 225-2341578-73031579-1505CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13398-011-0053-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:59Zoai:ri.conicet.gov.ar:11336/195690instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:59.66CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Discrete Lagrange-d'Alembert-Poincaré equations for Euler's disk |
title |
Discrete Lagrange-d'Alembert-Poincaré equations for Euler's disk |
spellingShingle |
Discrete Lagrange-d'Alembert-Poincaré equations for Euler's disk Campo, Cédric M. EULER'S DISK DISCRETE EQUATIONS SIMULATIONS |
title_short |
Discrete Lagrange-d'Alembert-Poincaré equations for Euler's disk |
title_full |
Discrete Lagrange-d'Alembert-Poincaré equations for Euler's disk |
title_fullStr |
Discrete Lagrange-d'Alembert-Poincaré equations for Euler's disk |
title_full_unstemmed |
Discrete Lagrange-d'Alembert-Poincaré equations for Euler's disk |
title_sort |
Discrete Lagrange-d'Alembert-Poincaré equations for Euler's disk |
dc.creator.none.fl_str_mv |
Campo, Cédric M. Cendra, Hernan Diaz, Viviana Alejandra de Diego, David Martín |
author |
Campo, Cédric M. |
author_facet |
Campo, Cédric M. Cendra, Hernan Diaz, Viviana Alejandra de Diego, David Martín |
author_role |
author |
author2 |
Cendra, Hernan Diaz, Viviana Alejandra de Diego, David Martín |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
EULER'S DISK DISCRETE EQUATIONS SIMULATIONS |
topic |
EULER'S DISK DISCRETE EQUATIONS SIMULATIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Nonholonomic systems are described by the Lagrange-d’Alembert principle. The presence of symmetry leads to a reduced d’Alembert principle and to the Lagrange-d’Alembert-Poincaré equations. First, we briefly recall from previous works how to obtain these reduced equations for the case of a thick disk rolling on a rough surface using a three-dimensional abelian group of symmetries. The main results of the present paper are the calculation of the discrete Lagrange-d’Alembert-Poincaré equations for an Euler’s disk and the numerical simulation of a trajectory and its energy behavior. Fil: Campo, Cédric M.. Universidad Autónoma de Madrid; España Fil: Cendra, Hernan. Universidad Nacional del Sur; Argentina Fil: Diaz, Viviana Alejandra. Universidad Nacional del Sur; Argentina Fil: de Diego, David Martín. Universidad Autónoma de Madrid; España |
description |
Nonholonomic systems are described by the Lagrange-d’Alembert principle. The presence of symmetry leads to a reduced d’Alembert principle and to the Lagrange-d’Alembert-Poincaré equations. First, we briefly recall from previous works how to obtain these reduced equations for the case of a thick disk rolling on a rough surface using a three-dimensional abelian group of symmetries. The main results of the present paper are the calculation of the discrete Lagrange-d’Alembert-Poincaré equations for an Euler’s disk and the numerical simulation of a trajectory and its energy behavior. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-11-18 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/195690 Campo, Cédric M.; Cendra, Hernan; Diaz, Viviana Alejandra; de Diego, David Martín; Discrete Lagrange-d'Alembert-Poincaré equations for Euler's disk; Real Academia Ciencias Exactas Fisicas y Naturales; Revista de la Real Academia de Ciencias Exactas Fisicas y Naturales Serie A-matematicas; 106; 1; 18-11-2011; 225-234 1578-7303 1579-1505 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/195690 |
identifier_str_mv |
Campo, Cédric M.; Cendra, Hernan; Diaz, Viviana Alejandra; de Diego, David Martín; Discrete Lagrange-d'Alembert-Poincaré equations for Euler's disk; Real Academia Ciencias Exactas Fisicas y Naturales; Revista de la Real Academia de Ciencias Exactas Fisicas y Naturales Serie A-matematicas; 106; 1; 18-11-2011; 225-234 1578-7303 1579-1505 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13398-011-0053-3 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Real Academia Ciencias Exactas Fisicas y Naturales |
publisher.none.fl_str_mv |
Real Academia Ciencias Exactas Fisicas y Naturales |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270026271293440 |
score |
13.13397 |