Discrete Lagrange-d'Alembert-Poincaré equations for Euler's disk

Autores
Campo, Cédric M.; Cendra, Hernan; Diaz, Viviana Alejandra; de Diego, David Martín
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Nonholonomic systems are described by the Lagrange-d’Alembert principle. The presence of symmetry leads to a reduced d’Alembert principle and to the Lagrange-d’Alembert-Poincaré equations. First, we briefly recall from previous works how to obtain these reduced equations for the case of a thick disk rolling on a rough surface using a three-dimensional abelian group of symmetries. The main results of the present paper are the calculation of the discrete Lagrange-d’Alembert-Poincaré equations for an Euler’s disk and the numerical simulation of a trajectory and its energy behavior.
Fil: Campo, Cédric M.. Universidad Autónoma de Madrid; España
Fil: Cendra, Hernan. Universidad Nacional del Sur; Argentina
Fil: Diaz, Viviana Alejandra. Universidad Nacional del Sur; Argentina
Fil: de Diego, David Martín. Universidad Autónoma de Madrid; España
Materia
EULER'S DISK
DISCRETE EQUATIONS
SIMULATIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/195690

id CONICETDig_4a95d80e491cb43a737e92fe659f57b4
oai_identifier_str oai:ri.conicet.gov.ar:11336/195690
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Discrete Lagrange-d'Alembert-Poincaré equations for Euler's diskCampo, Cédric M.Cendra, HernanDiaz, Viviana Alejandrade Diego, David MartínEULER'S DISKDISCRETE EQUATIONSSIMULATIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Nonholonomic systems are described by the Lagrange-d’Alembert principle. The presence of symmetry leads to a reduced d’Alembert principle and to the Lagrange-d’Alembert-Poincaré equations. First, we briefly recall from previous works how to obtain these reduced equations for the case of a thick disk rolling on a rough surface using a three-dimensional abelian group of symmetries. The main results of the present paper are the calculation of the discrete Lagrange-d’Alembert-Poincaré equations for an Euler’s disk and the numerical simulation of a trajectory and its energy behavior.Fil: Campo, Cédric M.. Universidad Autónoma de Madrid; EspañaFil: Cendra, Hernan. Universidad Nacional del Sur; ArgentinaFil: Diaz, Viviana Alejandra. Universidad Nacional del Sur; ArgentinaFil: de Diego, David Martín. Universidad Autónoma de Madrid; EspañaReal Academia Ciencias Exactas Fisicas y Naturales2011-11-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/195690Campo, Cédric M.; Cendra, Hernan; Diaz, Viviana Alejandra; de Diego, David Martín; Discrete Lagrange-d'Alembert-Poincaré equations for Euler's disk; Real Academia Ciencias Exactas Fisicas y Naturales; Revista de la Real Academia de Ciencias Exactas Fisicas y Naturales Serie A-matematicas; 106; 1; 18-11-2011; 225-2341578-73031579-1505CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13398-011-0053-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:59Zoai:ri.conicet.gov.ar:11336/195690instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:59.66CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Discrete Lagrange-d'Alembert-Poincaré equations for Euler's disk
title Discrete Lagrange-d'Alembert-Poincaré equations for Euler's disk
spellingShingle Discrete Lagrange-d'Alembert-Poincaré equations for Euler's disk
Campo, Cédric M.
EULER'S DISK
DISCRETE EQUATIONS
SIMULATIONS
title_short Discrete Lagrange-d'Alembert-Poincaré equations for Euler's disk
title_full Discrete Lagrange-d'Alembert-Poincaré equations for Euler's disk
title_fullStr Discrete Lagrange-d'Alembert-Poincaré equations for Euler's disk
title_full_unstemmed Discrete Lagrange-d'Alembert-Poincaré equations for Euler's disk
title_sort Discrete Lagrange-d'Alembert-Poincaré equations for Euler's disk
dc.creator.none.fl_str_mv Campo, Cédric M.
Cendra, Hernan
Diaz, Viviana Alejandra
de Diego, David Martín
author Campo, Cédric M.
author_facet Campo, Cédric M.
Cendra, Hernan
Diaz, Viviana Alejandra
de Diego, David Martín
author_role author
author2 Cendra, Hernan
Diaz, Viviana Alejandra
de Diego, David Martín
author2_role author
author
author
dc.subject.none.fl_str_mv EULER'S DISK
DISCRETE EQUATIONS
SIMULATIONS
topic EULER'S DISK
DISCRETE EQUATIONS
SIMULATIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Nonholonomic systems are described by the Lagrange-d’Alembert principle. The presence of symmetry leads to a reduced d’Alembert principle and to the Lagrange-d’Alembert-Poincaré equations. First, we briefly recall from previous works how to obtain these reduced equations for the case of a thick disk rolling on a rough surface using a three-dimensional abelian group of symmetries. The main results of the present paper are the calculation of the discrete Lagrange-d’Alembert-Poincaré equations for an Euler’s disk and the numerical simulation of a trajectory and its energy behavior.
Fil: Campo, Cédric M.. Universidad Autónoma de Madrid; España
Fil: Cendra, Hernan. Universidad Nacional del Sur; Argentina
Fil: Diaz, Viviana Alejandra. Universidad Nacional del Sur; Argentina
Fil: de Diego, David Martín. Universidad Autónoma de Madrid; España
description Nonholonomic systems are described by the Lagrange-d’Alembert principle. The presence of symmetry leads to a reduced d’Alembert principle and to the Lagrange-d’Alembert-Poincaré equations. First, we briefly recall from previous works how to obtain these reduced equations for the case of a thick disk rolling on a rough surface using a three-dimensional abelian group of symmetries. The main results of the present paper are the calculation of the discrete Lagrange-d’Alembert-Poincaré equations for an Euler’s disk and the numerical simulation of a trajectory and its energy behavior.
publishDate 2011
dc.date.none.fl_str_mv 2011-11-18
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/195690
Campo, Cédric M.; Cendra, Hernan; Diaz, Viviana Alejandra; de Diego, David Martín; Discrete Lagrange-d'Alembert-Poincaré equations for Euler's disk; Real Academia Ciencias Exactas Fisicas y Naturales; Revista de la Real Academia de Ciencias Exactas Fisicas y Naturales Serie A-matematicas; 106; 1; 18-11-2011; 225-234
1578-7303
1579-1505
CONICET Digital
CONICET
url http://hdl.handle.net/11336/195690
identifier_str_mv Campo, Cédric M.; Cendra, Hernan; Diaz, Viviana Alejandra; de Diego, David Martín; Discrete Lagrange-d'Alembert-Poincaré equations for Euler's disk; Real Academia Ciencias Exactas Fisicas y Naturales; Revista de la Real Academia de Ciencias Exactas Fisicas y Naturales Serie A-matematicas; 106; 1; 18-11-2011; 225-234
1578-7303
1579-1505
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13398-011-0053-3
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Real Academia Ciencias Exactas Fisicas y Naturales
publisher.none.fl_str_mv Real Academia Ciencias Exactas Fisicas y Naturales
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270026271293440
score 13.13397