Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces

Autores
Mihailescu, Mihai; Pérez Pérez, Maria Teresa
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper, we study the asymptotic behavior of the sequence of solutions for a family of torsional creep-type problems, involving inhomogeneous and anisotropic differential operators, on a bounded domain, subject to the homogenous Dirichlet boundary condition. We find out that the sequence of solutions converges uniformly on the domain to a certain distance function defined in accordance with the anisotropy of the problem. In addition, we identify the limit problem via viscosity solution theory.
Fil: Mihailescu, Mihai. University Of Craiova; Rumania
Fil: Pérez Pérez, Maria Teresa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
ANISOTROPIC OPERATOR
ORLICZ SOBOLEV SPACE
GAMMA CONVERGENCE
VISCOSITY SOLUTION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/88611

id CONICETDig_2f50a2f25bf44736aa72626dcc91b583
oai_identifier_str oai:ri.conicet.gov.ar:11336/88611
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spacesMihailescu, MihaiPérez Pérez, Maria TeresaANISOTROPIC OPERATORORLICZ SOBOLEV SPACEGAMMA CONVERGENCEVISCOSITY SOLUTIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we study the asymptotic behavior of the sequence of solutions for a family of torsional creep-type problems, involving inhomogeneous and anisotropic differential operators, on a bounded domain, subject to the homogenous Dirichlet boundary condition. We find out that the sequence of solutions converges uniformly on the domain to a certain distance function defined in accordance with the anisotropy of the problem. In addition, we identify the limit problem via viscosity solution theory.Fil: Mihailescu, Mihai. University Of Craiova; RumaniaFil: Pérez Pérez, Maria Teresa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaAmerican Institute of Physics2018-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88611Mihailescu, Mihai; Pérez Pérez, Maria Teresa; Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces; American Institute of Physics; Journal of Mathematical Physics; 59; 7; 7-20180022-2488CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.5047918info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.5047918info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:48:57Zoai:ri.conicet.gov.ar:11336/88611instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:48:57.304CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces
title Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces
spellingShingle Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces
Mihailescu, Mihai
ANISOTROPIC OPERATOR
ORLICZ SOBOLEV SPACE
GAMMA CONVERGENCE
VISCOSITY SOLUTION
title_short Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces
title_full Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces
title_fullStr Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces
title_full_unstemmed Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces
title_sort Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces
dc.creator.none.fl_str_mv Mihailescu, Mihai
Pérez Pérez, Maria Teresa
author Mihailescu, Mihai
author_facet Mihailescu, Mihai
Pérez Pérez, Maria Teresa
author_role author
author2 Pérez Pérez, Maria Teresa
author2_role author
dc.subject.none.fl_str_mv ANISOTROPIC OPERATOR
ORLICZ SOBOLEV SPACE
GAMMA CONVERGENCE
VISCOSITY SOLUTION
topic ANISOTROPIC OPERATOR
ORLICZ SOBOLEV SPACE
GAMMA CONVERGENCE
VISCOSITY SOLUTION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper, we study the asymptotic behavior of the sequence of solutions for a family of torsional creep-type problems, involving inhomogeneous and anisotropic differential operators, on a bounded domain, subject to the homogenous Dirichlet boundary condition. We find out that the sequence of solutions converges uniformly on the domain to a certain distance function defined in accordance with the anisotropy of the problem. In addition, we identify the limit problem via viscosity solution theory.
Fil: Mihailescu, Mihai. University Of Craiova; Rumania
Fil: Pérez Pérez, Maria Teresa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description In this paper, we study the asymptotic behavior of the sequence of solutions for a family of torsional creep-type problems, involving inhomogeneous and anisotropic differential operators, on a bounded domain, subject to the homogenous Dirichlet boundary condition. We find out that the sequence of solutions converges uniformly on the domain to a certain distance function defined in accordance with the anisotropy of the problem. In addition, we identify the limit problem via viscosity solution theory.
publishDate 2018
dc.date.none.fl_str_mv 2018-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/88611
Mihailescu, Mihai; Pérez Pérez, Maria Teresa; Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces; American Institute of Physics; Journal of Mathematical Physics; 59; 7; 7-2018
0022-2488
CONICET Digital
CONICET
url http://hdl.handle.net/11336/88611
identifier_str_mv Mihailescu, Mihai; Pérez Pérez, Maria Teresa; Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces; American Institute of Physics; Journal of Mathematical Physics; 59; 7; 7-2018
0022-2488
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1063/1.5047918
info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.5047918
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083011143008256
score 13.22299