Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces
- Autores
- Mihailescu, Mihai; Pérez Pérez, Maria Teresa
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we study the asymptotic behavior of the sequence of solutions for a family of torsional creep-type problems, involving inhomogeneous and anisotropic differential operators, on a bounded domain, subject to the homogenous Dirichlet boundary condition. We find out that the sequence of solutions converges uniformly on the domain to a certain distance function defined in accordance with the anisotropy of the problem. In addition, we identify the limit problem via viscosity solution theory.
Fil: Mihailescu, Mihai. University Of Craiova; Rumania
Fil: Pérez Pérez, Maria Teresa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
ANISOTROPIC OPERATOR
ORLICZ SOBOLEV SPACE
GAMMA CONVERGENCE
VISCOSITY SOLUTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/88611
Ver los metadatos del registro completo
id |
CONICETDig_2f50a2f25bf44736aa72626dcc91b583 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/88611 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spacesMihailescu, MihaiPérez Pérez, Maria TeresaANISOTROPIC OPERATORORLICZ SOBOLEV SPACEGAMMA CONVERGENCEVISCOSITY SOLUTIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we study the asymptotic behavior of the sequence of solutions for a family of torsional creep-type problems, involving inhomogeneous and anisotropic differential operators, on a bounded domain, subject to the homogenous Dirichlet boundary condition. We find out that the sequence of solutions converges uniformly on the domain to a certain distance function defined in accordance with the anisotropy of the problem. In addition, we identify the limit problem via viscosity solution theory.Fil: Mihailescu, Mihai. University Of Craiova; RumaniaFil: Pérez Pérez, Maria Teresa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaAmerican Institute of Physics2018-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88611Mihailescu, Mihai; Pérez Pérez, Maria Teresa; Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces; American Institute of Physics; Journal of Mathematical Physics; 59; 7; 7-20180022-2488CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.5047918info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.5047918info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:48:57Zoai:ri.conicet.gov.ar:11336/88611instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:48:57.304CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces |
title |
Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces |
spellingShingle |
Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces Mihailescu, Mihai ANISOTROPIC OPERATOR ORLICZ SOBOLEV SPACE GAMMA CONVERGENCE VISCOSITY SOLUTION |
title_short |
Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces |
title_full |
Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces |
title_fullStr |
Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces |
title_full_unstemmed |
Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces |
title_sort |
Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces |
dc.creator.none.fl_str_mv |
Mihailescu, Mihai Pérez Pérez, Maria Teresa |
author |
Mihailescu, Mihai |
author_facet |
Mihailescu, Mihai Pérez Pérez, Maria Teresa |
author_role |
author |
author2 |
Pérez Pérez, Maria Teresa |
author2_role |
author |
dc.subject.none.fl_str_mv |
ANISOTROPIC OPERATOR ORLICZ SOBOLEV SPACE GAMMA CONVERGENCE VISCOSITY SOLUTION |
topic |
ANISOTROPIC OPERATOR ORLICZ SOBOLEV SPACE GAMMA CONVERGENCE VISCOSITY SOLUTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, we study the asymptotic behavior of the sequence of solutions for a family of torsional creep-type problems, involving inhomogeneous and anisotropic differential operators, on a bounded domain, subject to the homogenous Dirichlet boundary condition. We find out that the sequence of solutions converges uniformly on the domain to a certain distance function defined in accordance with the anisotropy of the problem. In addition, we identify the limit problem via viscosity solution theory. Fil: Mihailescu, Mihai. University Of Craiova; Rumania Fil: Pérez Pérez, Maria Teresa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
In this paper, we study the asymptotic behavior of the sequence of solutions for a family of torsional creep-type problems, involving inhomogeneous and anisotropic differential operators, on a bounded domain, subject to the homogenous Dirichlet boundary condition. We find out that the sequence of solutions converges uniformly on the domain to a certain distance function defined in accordance with the anisotropy of the problem. In addition, we identify the limit problem via viscosity solution theory. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/88611 Mihailescu, Mihai; Pérez Pérez, Maria Teresa; Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces; American Institute of Physics; Journal of Mathematical Physics; 59; 7; 7-2018 0022-2488 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/88611 |
identifier_str_mv |
Mihailescu, Mihai; Pérez Pérez, Maria Teresa; Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces; American Institute of Physics; Journal of Mathematical Physics; 59; 7; 7-2018 0022-2488 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.5047918 info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.5047918 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083011143008256 |
score |
13.22299 |