Polynomial functions for direct calculation of the surface free energy developed from the Neumann equation of state method

Autores
Schuster, Jonathan Maximiliano; Schvezov, Carlos Enrique; Rosenberger, Mario Roberto
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The Neumann Equation of State (EQS) allows obtaining the value of the surface free energy of a solid (γSV) from the contact angle (θ) of a probe liquid with known surface tension (γLV). The value of γSV is obtained by numerical methods solving the corresponding EQS. In this work, we analyzed the discrepancies between the values of γSV obtained using the three versions of the EQS reported in the literature. The condition number of the different EQS was used to analyze their sensitivity to the uncertainty in the θ values. Polynomials fit to one of these versions of EQS are proposed to obtain values of γSV directly from contact angles (γSV(θ)) of particular probe liquids. Finally, a general adjusted polynomial is presented to obtain the values of γSV not restricted to a particular probe liquid (γSV(θ,γLV)). Results showed that the three versions of EQS present non-negligible discrepancies, especially at high values of θ. The sensitivity of the EQS to the uncertainty in the values of θ is very similar in the three versions and depends on the probe liquid used (greater sensitivity at higher γLV) and on the value of γSV of the solid (greater sensitivity at lower γSV). The discrepancy of the values obtained by numerical resolution of both the fifth-order fit polynomials and the general fit polynomial was low, no larger than ±0.40 mJ/m2. The polynomials obtained allow the analysis and propagation of the uncertainty of the input variables in the determination of γSV in a simple and fast way.
Fil: Schuster, Jonathan Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Químicas y Naturales. Instituto de Materiales de Misiones; Argentina
Fil: Schvezov, Carlos Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Químicas y Naturales. Instituto de Materiales de Misiones; Argentina
Fil: Rosenberger, Mario Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Químicas y Naturales. Instituto de Materiales de Misiones; Argentina
Materia
CONTACT ANGLE
EQUATION OF STATE
NUMERICAL METHODS
POLYNOMIAL FIT
SURFACE FREE ENERGY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/227532

id CONICETDig_7f9e040948e295adf99e484c6dd1d599
oai_identifier_str oai:ri.conicet.gov.ar:11336/227532
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Polynomial functions for direct calculation of the surface free energy developed from the Neumann equation of state methodSchuster, Jonathan MaximilianoSchvezov, Carlos EnriqueRosenberger, Mario RobertoCONTACT ANGLEEQUATION OF STATENUMERICAL METHODSPOLYNOMIAL FITSURFACE FREE ENERGYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The Neumann Equation of State (EQS) allows obtaining the value of the surface free energy of a solid (γSV) from the contact angle (θ) of a probe liquid with known surface tension (γLV). The value of γSV is obtained by numerical methods solving the corresponding EQS. In this work, we analyzed the discrepancies between the values of γSV obtained using the three versions of the EQS reported in the literature. The condition number of the different EQS was used to analyze their sensitivity to the uncertainty in the θ values. Polynomials fit to one of these versions of EQS are proposed to obtain values of γSV directly from contact angles (γSV(θ)) of particular probe liquids. Finally, a general adjusted polynomial is presented to obtain the values of γSV not restricted to a particular probe liquid (γSV(θ,γLV)). Results showed that the three versions of EQS present non-negligible discrepancies, especially at high values of θ. The sensitivity of the EQS to the uncertainty in the values of θ is very similar in the three versions and depends on the probe liquid used (greater sensitivity at higher γLV) and on the value of γSV of the solid (greater sensitivity at lower γSV). The discrepancy of the values obtained by numerical resolution of both the fifth-order fit polynomials and the general fit polynomial was low, no larger than ±0.40 mJ/m2. The polynomials obtained allow the analysis and propagation of the uncertainty of the input variables in the determination of γSV in a simple and fast way.Fil: Schuster, Jonathan Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Químicas y Naturales. Instituto de Materiales de Misiones; ArgentinaFil: Schvezov, Carlos Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Químicas y Naturales. Instituto de Materiales de Misiones; ArgentinaFil: Rosenberger, Mario Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Químicas y Naturales. Instituto de Materiales de Misiones; ArgentinaElsevier2023-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/227532Schuster, Jonathan Maximiliano; Schvezov, Carlos Enrique; Rosenberger, Mario Roberto; Polynomial functions for direct calculation of the surface free energy developed from the Neumann equation of state method; Elsevier; International Journal of Adhesion and Adhesives; 124; 5-2023; 1-420143-7496CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0143749623000490info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijadhadh.2023.103370info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:13:40Zoai:ri.conicet.gov.ar:11336/227532instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:13:40.623CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Polynomial functions for direct calculation of the surface free energy developed from the Neumann equation of state method
title Polynomial functions for direct calculation of the surface free energy developed from the Neumann equation of state method
spellingShingle Polynomial functions for direct calculation of the surface free energy developed from the Neumann equation of state method
Schuster, Jonathan Maximiliano
CONTACT ANGLE
EQUATION OF STATE
NUMERICAL METHODS
POLYNOMIAL FIT
SURFACE FREE ENERGY
title_short Polynomial functions for direct calculation of the surface free energy developed from the Neumann equation of state method
title_full Polynomial functions for direct calculation of the surface free energy developed from the Neumann equation of state method
title_fullStr Polynomial functions for direct calculation of the surface free energy developed from the Neumann equation of state method
title_full_unstemmed Polynomial functions for direct calculation of the surface free energy developed from the Neumann equation of state method
title_sort Polynomial functions for direct calculation of the surface free energy developed from the Neumann equation of state method
dc.creator.none.fl_str_mv Schuster, Jonathan Maximiliano
Schvezov, Carlos Enrique
Rosenberger, Mario Roberto
author Schuster, Jonathan Maximiliano
author_facet Schuster, Jonathan Maximiliano
Schvezov, Carlos Enrique
Rosenberger, Mario Roberto
author_role author
author2 Schvezov, Carlos Enrique
Rosenberger, Mario Roberto
author2_role author
author
dc.subject.none.fl_str_mv CONTACT ANGLE
EQUATION OF STATE
NUMERICAL METHODS
POLYNOMIAL FIT
SURFACE FREE ENERGY
topic CONTACT ANGLE
EQUATION OF STATE
NUMERICAL METHODS
POLYNOMIAL FIT
SURFACE FREE ENERGY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The Neumann Equation of State (EQS) allows obtaining the value of the surface free energy of a solid (γSV) from the contact angle (θ) of a probe liquid with known surface tension (γLV). The value of γSV is obtained by numerical methods solving the corresponding EQS. In this work, we analyzed the discrepancies between the values of γSV obtained using the three versions of the EQS reported in the literature. The condition number of the different EQS was used to analyze their sensitivity to the uncertainty in the θ values. Polynomials fit to one of these versions of EQS are proposed to obtain values of γSV directly from contact angles (γSV(θ)) of particular probe liquids. Finally, a general adjusted polynomial is presented to obtain the values of γSV not restricted to a particular probe liquid (γSV(θ,γLV)). Results showed that the three versions of EQS present non-negligible discrepancies, especially at high values of θ. The sensitivity of the EQS to the uncertainty in the values of θ is very similar in the three versions and depends on the probe liquid used (greater sensitivity at higher γLV) and on the value of γSV of the solid (greater sensitivity at lower γSV). The discrepancy of the values obtained by numerical resolution of both the fifth-order fit polynomials and the general fit polynomial was low, no larger than ±0.40 mJ/m2. The polynomials obtained allow the analysis and propagation of the uncertainty of the input variables in the determination of γSV in a simple and fast way.
Fil: Schuster, Jonathan Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Químicas y Naturales. Instituto de Materiales de Misiones; Argentina
Fil: Schvezov, Carlos Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Químicas y Naturales. Instituto de Materiales de Misiones; Argentina
Fil: Rosenberger, Mario Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Químicas y Naturales. Instituto de Materiales de Misiones; Argentina
description The Neumann Equation of State (EQS) allows obtaining the value of the surface free energy of a solid (γSV) from the contact angle (θ) of a probe liquid with known surface tension (γLV). The value of γSV is obtained by numerical methods solving the corresponding EQS. In this work, we analyzed the discrepancies between the values of γSV obtained using the three versions of the EQS reported in the literature. The condition number of the different EQS was used to analyze their sensitivity to the uncertainty in the θ values. Polynomials fit to one of these versions of EQS are proposed to obtain values of γSV directly from contact angles (γSV(θ)) of particular probe liquids. Finally, a general adjusted polynomial is presented to obtain the values of γSV not restricted to a particular probe liquid (γSV(θ,γLV)). Results showed that the three versions of EQS present non-negligible discrepancies, especially at high values of θ. The sensitivity of the EQS to the uncertainty in the values of θ is very similar in the three versions and depends on the probe liquid used (greater sensitivity at higher γLV) and on the value of γSV of the solid (greater sensitivity at lower γSV). The discrepancy of the values obtained by numerical resolution of both the fifth-order fit polynomials and the general fit polynomial was low, no larger than ±0.40 mJ/m2. The polynomials obtained allow the analysis and propagation of the uncertainty of the input variables in the determination of γSV in a simple and fast way.
publishDate 2023
dc.date.none.fl_str_mv 2023-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/227532
Schuster, Jonathan Maximiliano; Schvezov, Carlos Enrique; Rosenberger, Mario Roberto; Polynomial functions for direct calculation of the surface free energy developed from the Neumann equation of state method; Elsevier; International Journal of Adhesion and Adhesives; 124; 5-2023; 1-42
0143-7496
CONICET Digital
CONICET
url http://hdl.handle.net/11336/227532
identifier_str_mv Schuster, Jonathan Maximiliano; Schvezov, Carlos Enrique; Rosenberger, Mario Roberto; Polynomial functions for direct calculation of the surface free energy developed from the Neumann equation of state method; Elsevier; International Journal of Adhesion and Adhesives; 124; 5-2023; 1-42
0143-7496
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0143749623000490
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijadhadh.2023.103370
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614056489517056
score 13.070432