Weighted least squares solutions of the equation AXB - C = 0

Autores
Contino, Maximiliano; Giribet, Juan Ignacio; Maestripieri, Alejandra Laura
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let H be a Hilbert space, L(H) the algebra of bounded linear operators on H and W ∈ L(H) a positive operator such that W^1/2 is in the p-Schatten class, for some 1 ≤ p < ∞. Given A,B ∈ L(H) with closed range and C ∈ L(H), we study the following weighted approximation problem: analyze the existence ofmin{ ||AXB − C||p,W , X ∈L(H)}, (0.1)where ||X ||p,W = ||W^1/2 X ||p . We also study the related operator approximation problem: analyze the existence ofmin {(AXB − C)*W (AXB − C), X ∈L(H)}, (0.2)where the order is the one induced in L(H) by the cone of positive operators. In this paper we prove that the existence of the minimum of (0.2) is equivalent to the existence of a solution of the normal equation A*W (AXB − C) = 0. We also give sufficient conditions for the existence of the minimum.
Fil: Contino, Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Giribet, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Materia
OBLIQUE PROJECTIONS
OPERATOR APPROXIMATION
SCHATTEN P CLASSES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/65550

id CONICETDig_7ef129c12f3f27092fccbf942dd3cb42
oai_identifier_str oai:ri.conicet.gov.ar:11336/65550
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Weighted least squares solutions of the equation AXB - C = 0Contino, MaximilianoGiribet, Juan IgnacioMaestripieri, Alejandra LauraOBLIQUE PROJECTIONSOPERATOR APPROXIMATIONSCHATTEN P CLASSEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let H be a Hilbert space, L(H) the algebra of bounded linear operators on H and W ∈ L(H) a positive operator such that W^1/2 is in the p-Schatten class, for some 1 ≤ p < ∞. Given A,B ∈ L(H) with closed range and C ∈ L(H), we study the following weighted approximation problem: analyze the existence ofmin{ ||AXB − C||p,W , X ∈L(H)}, (0.1)where ||X ||p,W = ||W^1/2 X ||p . We also study the related operator approximation problem: analyze the existence ofmin {(AXB − C)*W (AXB − C), X ∈L(H)}, (0.2)where the order is the one induced in L(H) by the cone of positive operators. In this paper we prove that the existence of the minimum of (0.2) is equivalent to the existence of a solution of the normal equation A*W (AXB − C) = 0. We also give sufficient conditions for the existence of the minimum.Fil: Contino, Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Giribet, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaElsevier Science Inc2017-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/65550Contino, Maximiliano; Giribet, Juan Ignacio; Maestripieri, Alejandra Laura; Weighted least squares solutions of the equation AXB - C = 0; Elsevier Science Inc; Linear Algebra and its Applications; 518; 4-2017; 177-1970024-37951873-1856CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0024379516306279info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2016.12.028info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1610.00645info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:44Zoai:ri.conicet.gov.ar:11336/65550instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:44.964CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Weighted least squares solutions of the equation AXB - C = 0
title Weighted least squares solutions of the equation AXB - C = 0
spellingShingle Weighted least squares solutions of the equation AXB - C = 0
Contino, Maximiliano
OBLIQUE PROJECTIONS
OPERATOR APPROXIMATION
SCHATTEN P CLASSES
title_short Weighted least squares solutions of the equation AXB - C = 0
title_full Weighted least squares solutions of the equation AXB - C = 0
title_fullStr Weighted least squares solutions of the equation AXB - C = 0
title_full_unstemmed Weighted least squares solutions of the equation AXB - C = 0
title_sort Weighted least squares solutions of the equation AXB - C = 0
dc.creator.none.fl_str_mv Contino, Maximiliano
Giribet, Juan Ignacio
Maestripieri, Alejandra Laura
author Contino, Maximiliano
author_facet Contino, Maximiliano
Giribet, Juan Ignacio
Maestripieri, Alejandra Laura
author_role author
author2 Giribet, Juan Ignacio
Maestripieri, Alejandra Laura
author2_role author
author
dc.subject.none.fl_str_mv OBLIQUE PROJECTIONS
OPERATOR APPROXIMATION
SCHATTEN P CLASSES
topic OBLIQUE PROJECTIONS
OPERATOR APPROXIMATION
SCHATTEN P CLASSES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let H be a Hilbert space, L(H) the algebra of bounded linear operators on H and W ∈ L(H) a positive operator such that W^1/2 is in the p-Schatten class, for some 1 ≤ p < ∞. Given A,B ∈ L(H) with closed range and C ∈ L(H), we study the following weighted approximation problem: analyze the existence ofmin{ ||AXB − C||p,W , X ∈L(H)}, (0.1)where ||X ||p,W = ||W^1/2 X ||p . We also study the related operator approximation problem: analyze the existence ofmin {(AXB − C)*W (AXB − C), X ∈L(H)}, (0.2)where the order is the one induced in L(H) by the cone of positive operators. In this paper we prove that the existence of the minimum of (0.2) is equivalent to the existence of a solution of the normal equation A*W (AXB − C) = 0. We also give sufficient conditions for the existence of the minimum.
Fil: Contino, Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Giribet, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
description Let H be a Hilbert space, L(H) the algebra of bounded linear operators on H and W ∈ L(H) a positive operator such that W^1/2 is in the p-Schatten class, for some 1 ≤ p < ∞. Given A,B ∈ L(H) with closed range and C ∈ L(H), we study the following weighted approximation problem: analyze the existence ofmin{ ||AXB − C||p,W , X ∈L(H)}, (0.1)where ||X ||p,W = ||W^1/2 X ||p . We also study the related operator approximation problem: analyze the existence ofmin {(AXB − C)*W (AXB − C), X ∈L(H)}, (0.2)where the order is the one induced in L(H) by the cone of positive operators. In this paper we prove that the existence of the minimum of (0.2) is equivalent to the existence of a solution of the normal equation A*W (AXB − C) = 0. We also give sufficient conditions for the existence of the minimum.
publishDate 2017
dc.date.none.fl_str_mv 2017-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/65550
Contino, Maximiliano; Giribet, Juan Ignacio; Maestripieri, Alejandra Laura; Weighted least squares solutions of the equation AXB - C = 0; Elsevier Science Inc; Linear Algebra and its Applications; 518; 4-2017; 177-197
0024-3795
1873-1856
CONICET Digital
CONICET
url http://hdl.handle.net/11336/65550
identifier_str_mv Contino, Maximiliano; Giribet, Juan Ignacio; Maestripieri, Alejandra Laura; Weighted least squares solutions of the equation AXB - C = 0; Elsevier Science Inc; Linear Algebra and its Applications; 518; 4-2017; 177-197
0024-3795
1873-1856
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0024379516306279
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2016.12.028
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1610.00645
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Inc
publisher.none.fl_str_mv Elsevier Science Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268619149410304
score 13.13397