Global solutions of approximation problems in Hilbert spaces

Autores
Contino, Maximiliano; Di Iorio y Lucero, María Eugenia; Fongi, Guillermina
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study three well-known minimization problems in Hilbert spaces: the weighted least squares problem and the related problems of abstract splines and smoothing. In each case we analyze the solvability of the problem for every point of the Hilbert space in the corresponding data set, the existence of an operator that maps each data point to its solution in a linear and continuous way and the solvability of the associated operator problem in a fixed p-Schatten norm.
Fil: Contino, Maximiliano. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Di Iorio y Lucero, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Fongi, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
Materia
ABSTRACT SPLINE PROBLEMS
SCHATTEN P CLASSES
OPTIMAL INVERSES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/106946

id CONICETDig_c32501d422903eeba22c72e1009ecb36
oai_identifier_str oai:ri.conicet.gov.ar:11336/106946
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Global solutions of approximation problems in Hilbert spacesContino, MaximilianoDi Iorio y Lucero, María EugeniaFongi, GuillerminaABSTRACT SPLINE PROBLEMSSCHATTEN P CLASSESOPTIMAL INVERSEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study three well-known minimization problems in Hilbert spaces: the weighted least squares problem and the related problems of abstract splines and smoothing. In each case we analyze the solvability of the problem for every point of the Hilbert space in the corresponding data set, the existence of an operator that maps each data point to its solution in a linear and continuous way and the solvability of the associated operator problem in a fixed p-Schatten norm.Fil: Contino, Maximiliano. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Di Iorio y Lucero, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Fongi, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaTaylor & Francis2019-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/106946Contino, Maximiliano; Di Iorio y Lucero, María Eugenia; Fongi, Guillermina; Global solutions of approximation problems in Hilbert spaces; Taylor & Francis; Linear And Multilinear Algebra; 10-2019; 1-170308-1087CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/03081087.2019.1681929info:eu-repo/semantics/altIdentifier/doi/10.1080/03081087.2019.1681929info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1903.06573info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:32Zoai:ri.conicet.gov.ar:11336/106946instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:32.667CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Global solutions of approximation problems in Hilbert spaces
title Global solutions of approximation problems in Hilbert spaces
spellingShingle Global solutions of approximation problems in Hilbert spaces
Contino, Maximiliano
ABSTRACT SPLINE PROBLEMS
SCHATTEN P CLASSES
OPTIMAL INVERSES
title_short Global solutions of approximation problems in Hilbert spaces
title_full Global solutions of approximation problems in Hilbert spaces
title_fullStr Global solutions of approximation problems in Hilbert spaces
title_full_unstemmed Global solutions of approximation problems in Hilbert spaces
title_sort Global solutions of approximation problems in Hilbert spaces
dc.creator.none.fl_str_mv Contino, Maximiliano
Di Iorio y Lucero, María Eugenia
Fongi, Guillermina
author Contino, Maximiliano
author_facet Contino, Maximiliano
Di Iorio y Lucero, María Eugenia
Fongi, Guillermina
author_role author
author2 Di Iorio y Lucero, María Eugenia
Fongi, Guillermina
author2_role author
author
dc.subject.none.fl_str_mv ABSTRACT SPLINE PROBLEMS
SCHATTEN P CLASSES
OPTIMAL INVERSES
topic ABSTRACT SPLINE PROBLEMS
SCHATTEN P CLASSES
OPTIMAL INVERSES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study three well-known minimization problems in Hilbert spaces: the weighted least squares problem and the related problems of abstract splines and smoothing. In each case we analyze the solvability of the problem for every point of the Hilbert space in the corresponding data set, the existence of an operator that maps each data point to its solution in a linear and continuous way and the solvability of the associated operator problem in a fixed p-Schatten norm.
Fil: Contino, Maximiliano. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Di Iorio y Lucero, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Fongi, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
description We study three well-known minimization problems in Hilbert spaces: the weighted least squares problem and the related problems of abstract splines and smoothing. In each case we analyze the solvability of the problem for every point of the Hilbert space in the corresponding data set, the existence of an operator that maps each data point to its solution in a linear and continuous way and the solvability of the associated operator problem in a fixed p-Schatten norm.
publishDate 2019
dc.date.none.fl_str_mv 2019-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/106946
Contino, Maximiliano; Di Iorio y Lucero, María Eugenia; Fongi, Guillermina; Global solutions of approximation problems in Hilbert spaces; Taylor & Francis; Linear And Multilinear Algebra; 10-2019; 1-17
0308-1087
CONICET Digital
CONICET
url http://hdl.handle.net/11336/106946
identifier_str_mv Contino, Maximiliano; Di Iorio y Lucero, María Eugenia; Fongi, Guillermina; Global solutions of approximation problems in Hilbert spaces; Taylor & Francis; Linear And Multilinear Algebra; 10-2019; 1-17
0308-1087
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/03081087.2019.1681929
info:eu-repo/semantics/altIdentifier/doi/10.1080/03081087.2019.1681929
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1903.06573
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268979278643200
score 13.13397