An approximate mathematical framework for resource-constrained multistage batch scheduling
- Autores
- Marchetti, Pablo Andres; Cerda, Jaime
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A rigorous representation of the multistage batch scheduling problem is often useless to even provide a good feasible schedule for many real-world industrial facilities. In order to derive a much simpler scheduling methodology, some usual features of multistage batch plants should be exploited. A common observation in industry is that multistage processing structures usually present a bottleneck stage (BS) controlling the plant output level. Therefore, the quality of the production schedule heavily depends on the proper allocation and sequencing of the tasks performed at the stage BS. Every other part of the processing sequence should be properly aligned with the selected timetable for the bottleneck tasks. A closely related concept with an empirical basis is the usual existence of a common batch sequencing pattern along the entire processing structure that leads to define the constant-batch-ordering rule (CBOR). According to this rule, a single sequencing variable is sufficient to establish the relative ordering of two batches at every processing stage in which both have been allocated to the same resource item. This work introduces a CBOR-based global precedence formulation for the scheduling of order-driven multistage batch facilities. The proposed MILP approximate problem representation is able to handle sequence-dependent changeovers, delivery due dates and limited manufacturing resources other than equipment units. Optimal or near-optimal solutions to several large-scale examples were found at very competitive CPU times.
Fil: Marchetti, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Cerda, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina - Materia
-
Bottleneck
Chemical Processes
Mathematical Modelling
Multistage Batch Plants
Optimization
Scheduling - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/76353
Ver los metadatos del registro completo
id |
CONICETDig_01ded42543cc22b19137c0af572dbecf |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/76353 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An approximate mathematical framework for resource-constrained multistage batch schedulingMarchetti, Pablo AndresCerda, JaimeBottleneckChemical ProcessesMathematical ModellingMultistage Batch PlantsOptimizationSchedulinghttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2A rigorous representation of the multistage batch scheduling problem is often useless to even provide a good feasible schedule for many real-world industrial facilities. In order to derive a much simpler scheduling methodology, some usual features of multistage batch plants should be exploited. A common observation in industry is that multistage processing structures usually present a bottleneck stage (BS) controlling the plant output level. Therefore, the quality of the production schedule heavily depends on the proper allocation and sequencing of the tasks performed at the stage BS. Every other part of the processing sequence should be properly aligned with the selected timetable for the bottleneck tasks. A closely related concept with an empirical basis is the usual existence of a common batch sequencing pattern along the entire processing structure that leads to define the constant-batch-ordering rule (CBOR). According to this rule, a single sequencing variable is sufficient to establish the relative ordering of two batches at every processing stage in which both have been allocated to the same resource item. This work introduces a CBOR-based global precedence formulation for the scheduling of order-driven multistage batch facilities. The proposed MILP approximate problem representation is able to handle sequence-dependent changeovers, delivery due dates and limited manufacturing resources other than equipment units. Optimal or near-optimal solutions to several large-scale examples were found at very competitive CPU times.Fil: Marchetti, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Cerda, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaPergamon-Elsevier Science Ltd2009-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/76353Marchetti, Pablo Andres; Cerda, Jaime; An approximate mathematical framework for resource-constrained multistage batch scheduling; Pergamon-Elsevier Science Ltd; Chemical Engineering Science; 64; 11; 6-2009; 2733-27480009-2509CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ces.2009.03.002info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:38Zoai:ri.conicet.gov.ar:11336/76353instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:38.689CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An approximate mathematical framework for resource-constrained multistage batch scheduling |
title |
An approximate mathematical framework for resource-constrained multistage batch scheduling |
spellingShingle |
An approximate mathematical framework for resource-constrained multistage batch scheduling Marchetti, Pablo Andres Bottleneck Chemical Processes Mathematical Modelling Multistage Batch Plants Optimization Scheduling |
title_short |
An approximate mathematical framework for resource-constrained multistage batch scheduling |
title_full |
An approximate mathematical framework for resource-constrained multistage batch scheduling |
title_fullStr |
An approximate mathematical framework for resource-constrained multistage batch scheduling |
title_full_unstemmed |
An approximate mathematical framework for resource-constrained multistage batch scheduling |
title_sort |
An approximate mathematical framework for resource-constrained multistage batch scheduling |
dc.creator.none.fl_str_mv |
Marchetti, Pablo Andres Cerda, Jaime |
author |
Marchetti, Pablo Andres |
author_facet |
Marchetti, Pablo Andres Cerda, Jaime |
author_role |
author |
author2 |
Cerda, Jaime |
author2_role |
author |
dc.subject.none.fl_str_mv |
Bottleneck Chemical Processes Mathematical Modelling Multistage Batch Plants Optimization Scheduling |
topic |
Bottleneck Chemical Processes Mathematical Modelling Multistage Batch Plants Optimization Scheduling |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
A rigorous representation of the multistage batch scheduling problem is often useless to even provide a good feasible schedule for many real-world industrial facilities. In order to derive a much simpler scheduling methodology, some usual features of multistage batch plants should be exploited. A common observation in industry is that multistage processing structures usually present a bottleneck stage (BS) controlling the plant output level. Therefore, the quality of the production schedule heavily depends on the proper allocation and sequencing of the tasks performed at the stage BS. Every other part of the processing sequence should be properly aligned with the selected timetable for the bottleneck tasks. A closely related concept with an empirical basis is the usual existence of a common batch sequencing pattern along the entire processing structure that leads to define the constant-batch-ordering rule (CBOR). According to this rule, a single sequencing variable is sufficient to establish the relative ordering of two batches at every processing stage in which both have been allocated to the same resource item. This work introduces a CBOR-based global precedence formulation for the scheduling of order-driven multistage batch facilities. The proposed MILP approximate problem representation is able to handle sequence-dependent changeovers, delivery due dates and limited manufacturing resources other than equipment units. Optimal or near-optimal solutions to several large-scale examples were found at very competitive CPU times. Fil: Marchetti, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Cerda, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina |
description |
A rigorous representation of the multistage batch scheduling problem is often useless to even provide a good feasible schedule for many real-world industrial facilities. In order to derive a much simpler scheduling methodology, some usual features of multistage batch plants should be exploited. A common observation in industry is that multistage processing structures usually present a bottleneck stage (BS) controlling the plant output level. Therefore, the quality of the production schedule heavily depends on the proper allocation and sequencing of the tasks performed at the stage BS. Every other part of the processing sequence should be properly aligned with the selected timetable for the bottleneck tasks. A closely related concept with an empirical basis is the usual existence of a common batch sequencing pattern along the entire processing structure that leads to define the constant-batch-ordering rule (CBOR). According to this rule, a single sequencing variable is sufficient to establish the relative ordering of two batches at every processing stage in which both have been allocated to the same resource item. This work introduces a CBOR-based global precedence formulation for the scheduling of order-driven multistage batch facilities. The proposed MILP approximate problem representation is able to handle sequence-dependent changeovers, delivery due dates and limited manufacturing resources other than equipment units. Optimal or near-optimal solutions to several large-scale examples were found at very competitive CPU times. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/76353 Marchetti, Pablo Andres; Cerda, Jaime; An approximate mathematical framework for resource-constrained multistage batch scheduling; Pergamon-Elsevier Science Ltd; Chemical Engineering Science; 64; 11; 6-2009; 2733-2748 0009-2509 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/76353 |
identifier_str_mv |
Marchetti, Pablo Andres; Cerda, Jaime; An approximate mathematical framework for resource-constrained multistage batch scheduling; Pergamon-Elsevier Science Ltd; Chemical Engineering Science; 64; 11; 6-2009; 2733-2748 0009-2509 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ces.2009.03.002 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269967732441088 |
score |
13.13397 |