Modifier adaptation with guaranteed feasibility in the presence of gradient uncertainty
- Autores
- Marchetti, Alejandro Gabriel; Singhal, M.; Faulwasser, T.; Bonvin, D.
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the context of real-time optimization, modifier-adaptation schemes use estimates of the plant gradients to achieve plant optimality despite plant-model mismatch. Plant feasibility is guaranteed upon convergence, but not at the successive operating points computed by the algorithm prior to convergence. This paper presents a strategy for guaranteeing rigorous constraint satisfaction of all iterates in the presence of plant-model mismatch and uncertainty in the gradient estimates. The proposed strategy relies on constructing constraint upper-bounding functions that are robust to the gradient uncertainty that results when the gradients are estimated by finite differences from noisy measurements. The performance of the approach is illustrated for the optimization of a continuous stirred-tank reactor.
Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ecole Polytechnique Federale de Lausanne; Suiza
Fil: Singhal, M.. Ecole Polytechnique Federale de Lausanne; Suiza
Fil: Faulwasser, T.. Ecole Polytechnique Federale de Lausanne; Suiza
Fil: Bonvin, D.. Ecole Polytechnique Federale de Lausanne; Suiza - Materia
-
Feasible Operation
Gradient Uncertainty
Modifier Adaptation
Real-Time Optimization - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/53151
Ver los metadatos del registro completo
| id |
CONICETDig_7b23715f6436e16a8f4d221319ffcb8d |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/53151 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Modifier adaptation with guaranteed feasibility in the presence of gradient uncertaintyMarchetti, Alejandro GabrielSinghal, M.Faulwasser, T.Bonvin, D.Feasible OperationGradient UncertaintyModifier AdaptationReal-Time Optimizationhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In the context of real-time optimization, modifier-adaptation schemes use estimates of the plant gradients to achieve plant optimality despite plant-model mismatch. Plant feasibility is guaranteed upon convergence, but not at the successive operating points computed by the algorithm prior to convergence. This paper presents a strategy for guaranteeing rigorous constraint satisfaction of all iterates in the presence of plant-model mismatch and uncertainty in the gradient estimates. The proposed strategy relies on constructing constraint upper-bounding functions that are robust to the gradient uncertainty that results when the gradients are estimated by finite differences from noisy measurements. The performance of the approach is illustrated for the optimization of a continuous stirred-tank reactor.Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ecole Polytechnique Federale de Lausanne; SuizaFil: Singhal, M.. Ecole Polytechnique Federale de Lausanne; SuizaFil: Faulwasser, T.. Ecole Polytechnique Federale de Lausanne; SuizaFil: Bonvin, D.. Ecole Polytechnique Federale de Lausanne; SuizaPergamon-Elsevier Science Ltd2017-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/53151Marchetti, Alejandro Gabriel; Singhal, M.; Faulwasser, T.; Bonvin, D.; Modifier adaptation with guaranteed feasibility in the presence of gradient uncertainty; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 98; 1-2017; 61-690098-1354CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2016.11.027info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0098135416303751info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:48:29Zoai:ri.conicet.gov.ar:11336/53151instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:48:29.954CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Modifier adaptation with guaranteed feasibility in the presence of gradient uncertainty |
| title |
Modifier adaptation with guaranteed feasibility in the presence of gradient uncertainty |
| spellingShingle |
Modifier adaptation with guaranteed feasibility in the presence of gradient uncertainty Marchetti, Alejandro Gabriel Feasible Operation Gradient Uncertainty Modifier Adaptation Real-Time Optimization |
| title_short |
Modifier adaptation with guaranteed feasibility in the presence of gradient uncertainty |
| title_full |
Modifier adaptation with guaranteed feasibility in the presence of gradient uncertainty |
| title_fullStr |
Modifier adaptation with guaranteed feasibility in the presence of gradient uncertainty |
| title_full_unstemmed |
Modifier adaptation with guaranteed feasibility in the presence of gradient uncertainty |
| title_sort |
Modifier adaptation with guaranteed feasibility in the presence of gradient uncertainty |
| dc.creator.none.fl_str_mv |
Marchetti, Alejandro Gabriel Singhal, M. Faulwasser, T. Bonvin, D. |
| author |
Marchetti, Alejandro Gabriel |
| author_facet |
Marchetti, Alejandro Gabriel Singhal, M. Faulwasser, T. Bonvin, D. |
| author_role |
author |
| author2 |
Singhal, M. Faulwasser, T. Bonvin, D. |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Feasible Operation Gradient Uncertainty Modifier Adaptation Real-Time Optimization |
| topic |
Feasible Operation Gradient Uncertainty Modifier Adaptation Real-Time Optimization |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
In the context of real-time optimization, modifier-adaptation schemes use estimates of the plant gradients to achieve plant optimality despite plant-model mismatch. Plant feasibility is guaranteed upon convergence, but not at the successive operating points computed by the algorithm prior to convergence. This paper presents a strategy for guaranteeing rigorous constraint satisfaction of all iterates in the presence of plant-model mismatch and uncertainty in the gradient estimates. The proposed strategy relies on constructing constraint upper-bounding functions that are robust to the gradient uncertainty that results when the gradients are estimated by finite differences from noisy measurements. The performance of the approach is illustrated for the optimization of a continuous stirred-tank reactor. Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ecole Polytechnique Federale de Lausanne; Suiza Fil: Singhal, M.. Ecole Polytechnique Federale de Lausanne; Suiza Fil: Faulwasser, T.. Ecole Polytechnique Federale de Lausanne; Suiza Fil: Bonvin, D.. Ecole Polytechnique Federale de Lausanne; Suiza |
| description |
In the context of real-time optimization, modifier-adaptation schemes use estimates of the plant gradients to achieve plant optimality despite plant-model mismatch. Plant feasibility is guaranteed upon convergence, but not at the successive operating points computed by the algorithm prior to convergence. This paper presents a strategy for guaranteeing rigorous constraint satisfaction of all iterates in the presence of plant-model mismatch and uncertainty in the gradient estimates. The proposed strategy relies on constructing constraint upper-bounding functions that are robust to the gradient uncertainty that results when the gradients are estimated by finite differences from noisy measurements. The performance of the approach is illustrated for the optimization of a continuous stirred-tank reactor. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/53151 Marchetti, Alejandro Gabriel; Singhal, M.; Faulwasser, T.; Bonvin, D.; Modifier adaptation with guaranteed feasibility in the presence of gradient uncertainty; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 98; 1-2017; 61-69 0098-1354 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/53151 |
| identifier_str_mv |
Marchetti, Alejandro Gabriel; Singhal, M.; Faulwasser, T.; Bonvin, D.; Modifier adaptation with guaranteed feasibility in the presence of gradient uncertainty; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 98; 1-2017; 61-69 0098-1354 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2016.11.027 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0098135416303751 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
| publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848598012448735232 |
| score |
12.976206 |