Modifier adaptation with guaranteed feasibility in the presence of gradient uncertainty

Autores
Marchetti, Alejandro Gabriel; Singhal, M.; Faulwasser, T.; Bonvin, D.
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the context of real-time optimization, modifier-adaptation schemes use estimates of the plant gradients to achieve plant optimality despite plant-model mismatch. Plant feasibility is guaranteed upon convergence, but not at the successive operating points computed by the algorithm prior to convergence. This paper presents a strategy for guaranteeing rigorous constraint satisfaction of all iterates in the presence of plant-model mismatch and uncertainty in the gradient estimates. The proposed strategy relies on constructing constraint upper-bounding functions that are robust to the gradient uncertainty that results when the gradients are estimated by finite differences from noisy measurements. The performance of the approach is illustrated for the optimization of a continuous stirred-tank reactor.
Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ecole Polytechnique Federale de Lausanne; Suiza
Fil: Singhal, M.. Ecole Polytechnique Federale de Lausanne; Suiza
Fil: Faulwasser, T.. Ecole Polytechnique Federale de Lausanne; Suiza
Fil: Bonvin, D.. Ecole Polytechnique Federale de Lausanne; Suiza
Materia
Feasible Operation
Gradient Uncertainty
Modifier Adaptation
Real-Time Optimization
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/53151

id CONICETDig_7b23715f6436e16a8f4d221319ffcb8d
oai_identifier_str oai:ri.conicet.gov.ar:11336/53151
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Modifier adaptation with guaranteed feasibility in the presence of gradient uncertaintyMarchetti, Alejandro GabrielSinghal, M.Faulwasser, T.Bonvin, D.Feasible OperationGradient UncertaintyModifier AdaptationReal-Time Optimizationhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In the context of real-time optimization, modifier-adaptation schemes use estimates of the plant gradients to achieve plant optimality despite plant-model mismatch. Plant feasibility is guaranteed upon convergence, but not at the successive operating points computed by the algorithm prior to convergence. This paper presents a strategy for guaranteeing rigorous constraint satisfaction of all iterates in the presence of plant-model mismatch and uncertainty in the gradient estimates. The proposed strategy relies on constructing constraint upper-bounding functions that are robust to the gradient uncertainty that results when the gradients are estimated by finite differences from noisy measurements. The performance of the approach is illustrated for the optimization of a continuous stirred-tank reactor.Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ecole Polytechnique Federale de Lausanne; SuizaFil: Singhal, M.. Ecole Polytechnique Federale de Lausanne; SuizaFil: Faulwasser, T.. Ecole Polytechnique Federale de Lausanne; SuizaFil: Bonvin, D.. Ecole Polytechnique Federale de Lausanne; SuizaPergamon-Elsevier Science Ltd2017-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/53151Marchetti, Alejandro Gabriel; Singhal, M.; Faulwasser, T.; Bonvin, D.; Modifier adaptation with guaranteed feasibility in the presence of gradient uncertainty; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 98; 1-2017; 61-690098-1354CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2016.11.027info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0098135416303751info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:48:29Zoai:ri.conicet.gov.ar:11336/53151instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:48:29.954CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Modifier adaptation with guaranteed feasibility in the presence of gradient uncertainty
title Modifier adaptation with guaranteed feasibility in the presence of gradient uncertainty
spellingShingle Modifier adaptation with guaranteed feasibility in the presence of gradient uncertainty
Marchetti, Alejandro Gabriel
Feasible Operation
Gradient Uncertainty
Modifier Adaptation
Real-Time Optimization
title_short Modifier adaptation with guaranteed feasibility in the presence of gradient uncertainty
title_full Modifier adaptation with guaranteed feasibility in the presence of gradient uncertainty
title_fullStr Modifier adaptation with guaranteed feasibility in the presence of gradient uncertainty
title_full_unstemmed Modifier adaptation with guaranteed feasibility in the presence of gradient uncertainty
title_sort Modifier adaptation with guaranteed feasibility in the presence of gradient uncertainty
dc.creator.none.fl_str_mv Marchetti, Alejandro Gabriel
Singhal, M.
Faulwasser, T.
Bonvin, D.
author Marchetti, Alejandro Gabriel
author_facet Marchetti, Alejandro Gabriel
Singhal, M.
Faulwasser, T.
Bonvin, D.
author_role author
author2 Singhal, M.
Faulwasser, T.
Bonvin, D.
author2_role author
author
author
dc.subject.none.fl_str_mv Feasible Operation
Gradient Uncertainty
Modifier Adaptation
Real-Time Optimization
topic Feasible Operation
Gradient Uncertainty
Modifier Adaptation
Real-Time Optimization
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In the context of real-time optimization, modifier-adaptation schemes use estimates of the plant gradients to achieve plant optimality despite plant-model mismatch. Plant feasibility is guaranteed upon convergence, but not at the successive operating points computed by the algorithm prior to convergence. This paper presents a strategy for guaranteeing rigorous constraint satisfaction of all iterates in the presence of plant-model mismatch and uncertainty in the gradient estimates. The proposed strategy relies on constructing constraint upper-bounding functions that are robust to the gradient uncertainty that results when the gradients are estimated by finite differences from noisy measurements. The performance of the approach is illustrated for the optimization of a continuous stirred-tank reactor.
Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ecole Polytechnique Federale de Lausanne; Suiza
Fil: Singhal, M.. Ecole Polytechnique Federale de Lausanne; Suiza
Fil: Faulwasser, T.. Ecole Polytechnique Federale de Lausanne; Suiza
Fil: Bonvin, D.. Ecole Polytechnique Federale de Lausanne; Suiza
description In the context of real-time optimization, modifier-adaptation schemes use estimates of the plant gradients to achieve plant optimality despite plant-model mismatch. Plant feasibility is guaranteed upon convergence, but not at the successive operating points computed by the algorithm prior to convergence. This paper presents a strategy for guaranteeing rigorous constraint satisfaction of all iterates in the presence of plant-model mismatch and uncertainty in the gradient estimates. The proposed strategy relies on constructing constraint upper-bounding functions that are robust to the gradient uncertainty that results when the gradients are estimated by finite differences from noisy measurements. The performance of the approach is illustrated for the optimization of a continuous stirred-tank reactor.
publishDate 2017
dc.date.none.fl_str_mv 2017-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/53151
Marchetti, Alejandro Gabriel; Singhal, M.; Faulwasser, T.; Bonvin, D.; Modifier adaptation with guaranteed feasibility in the presence of gradient uncertainty; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 98; 1-2017; 61-69
0098-1354
CONICET Digital
CONICET
url http://hdl.handle.net/11336/53151
identifier_str_mv Marchetti, Alejandro Gabriel; Singhal, M.; Faulwasser, T.; Bonvin, D.; Modifier adaptation with guaranteed feasibility in the presence of gradient uncertainty; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 98; 1-2017; 61-69
0098-1354
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2016.11.027
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0098135416303751
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1848598012448735232
score 12.976206