Patterns in random fractals
- Autores
- Shmerkin, Pablo Sebastian; Suomala, Ville
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We characterize the existence of certain geometric configurations in the fractal percolation limit set A in terms of the almost sure dimension of A. Some examples of the configurations we study are: homothetic copies of finite sets, angles, distances, and volumes of simplices. In the spirit of relative Szemer´edi theorems for random discrete sets, we also consider the corresponding problem for sets of positive ν-measure, where ν is the natural measure on A. In both cases we identify the dimension threshold for each class of configurations. These results are obtained by investigating the intersections of the products of m independent realizations of A with transversal planes and, more generally, algebraic varieties, and extend some well known features of independent percolation on trees to a setting with long-range dependencies.
Fil: Shmerkin, Pablo Sebastian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Suomala, Ville. Universidad de Oulu; Finlandia - Materia
-
PATTERNS
RANDOM FRACTALS
FRACTAL PERCOLATION
PROGRESSIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/168985
Ver los metadatos del registro completo
id |
CONICETDig_7a853cdd7d9874da0a238c1dcc611f31 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/168985 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Patterns in random fractalsShmerkin, Pablo SebastianSuomala, VillePATTERNSRANDOM FRACTALSFRACTAL PERCOLATIONPROGRESSIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We characterize the existence of certain geometric configurations in the fractal percolation limit set A in terms of the almost sure dimension of A. Some examples of the configurations we study are: homothetic copies of finite sets, angles, distances, and volumes of simplices. In the spirit of relative Szemer´edi theorems for random discrete sets, we also consider the corresponding problem for sets of positive ν-measure, where ν is the natural measure on A. In both cases we identify the dimension threshold for each class of configurations. These results are obtained by investigating the intersections of the products of m independent realizations of A with transversal planes and, more generally, algebraic varieties, and extend some well known features of independent percolation on trees to a setting with long-range dependencies.Fil: Shmerkin, Pablo Sebastian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Suomala, Ville. Universidad de Oulu; FinlandiaJohns Hopkins University Press2020-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/168985Shmerkin, Pablo Sebastian; Suomala, Ville; Patterns in random fractals; Johns Hopkins University Press; American Journal Of Mathematics; 142; 3; 6-2020; 683-7491080-63770002-9327CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://muse.jhu.edu/article/755116info:eu-repo/semantics/altIdentifier/doi/10.1353/ajm.2020.0024info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1703.09553v1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:57:07Zoai:ri.conicet.gov.ar:11336/168985instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:57:07.366CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Patterns in random fractals |
title |
Patterns in random fractals |
spellingShingle |
Patterns in random fractals Shmerkin, Pablo Sebastian PATTERNS RANDOM FRACTALS FRACTAL PERCOLATION PROGRESSIONS |
title_short |
Patterns in random fractals |
title_full |
Patterns in random fractals |
title_fullStr |
Patterns in random fractals |
title_full_unstemmed |
Patterns in random fractals |
title_sort |
Patterns in random fractals |
dc.creator.none.fl_str_mv |
Shmerkin, Pablo Sebastian Suomala, Ville |
author |
Shmerkin, Pablo Sebastian |
author_facet |
Shmerkin, Pablo Sebastian Suomala, Ville |
author_role |
author |
author2 |
Suomala, Ville |
author2_role |
author |
dc.subject.none.fl_str_mv |
PATTERNS RANDOM FRACTALS FRACTAL PERCOLATION PROGRESSIONS |
topic |
PATTERNS RANDOM FRACTALS FRACTAL PERCOLATION PROGRESSIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We characterize the existence of certain geometric configurations in the fractal percolation limit set A in terms of the almost sure dimension of A. Some examples of the configurations we study are: homothetic copies of finite sets, angles, distances, and volumes of simplices. In the spirit of relative Szemer´edi theorems for random discrete sets, we also consider the corresponding problem for sets of positive ν-measure, where ν is the natural measure on A. In both cases we identify the dimension threshold for each class of configurations. These results are obtained by investigating the intersections of the products of m independent realizations of A with transversal planes and, more generally, algebraic varieties, and extend some well known features of independent percolation on trees to a setting with long-range dependencies. Fil: Shmerkin, Pablo Sebastian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Suomala, Ville. Universidad de Oulu; Finlandia |
description |
We characterize the existence of certain geometric configurations in the fractal percolation limit set A in terms of the almost sure dimension of A. Some examples of the configurations we study are: homothetic copies of finite sets, angles, distances, and volumes of simplices. In the spirit of relative Szemer´edi theorems for random discrete sets, we also consider the corresponding problem for sets of positive ν-measure, where ν is the natural measure on A. In both cases we identify the dimension threshold for each class of configurations. These results are obtained by investigating the intersections of the products of m independent realizations of A with transversal planes and, more generally, algebraic varieties, and extend some well known features of independent percolation on trees to a setting with long-range dependencies. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/168985 Shmerkin, Pablo Sebastian; Suomala, Ville; Patterns in random fractals; Johns Hopkins University Press; American Journal Of Mathematics; 142; 3; 6-2020; 683-749 1080-6377 0002-9327 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/168985 |
identifier_str_mv |
Shmerkin, Pablo Sebastian; Suomala, Ville; Patterns in random fractals; Johns Hopkins University Press; American Journal Of Mathematics; 142; 3; 6-2020; 683-749 1080-6377 0002-9327 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://muse.jhu.edu/article/755116 info:eu-repo/semantics/altIdentifier/doi/10.1353/ajm.2020.0024 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1703.09553v1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Johns Hopkins University Press |
publisher.none.fl_str_mv |
Johns Hopkins University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613710582120448 |
score |
13.070432 |