Local Einstein relation for fractals

Autores
Padilla, Lorena; Iguain, Jose Luis
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study single random walks and the electrical resistance for fractals obtained as the limit of a sequence of periodic structures. In the long-scale regime, power laws describe both the mean-square displacement of a random walk as a function of time and the electrical resistance as a function of length. We show that the corresponding power-law exponents satisfy the Einstein relation. For shorter scales, where these exponents depend on length, we find how the Einstein relation can be generalized to hold locally. All these findings were analytically derived and confirmed by numerical simulations.
Fil: Padilla, Lorena. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Iguain, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Materia
EINSTEIN RELATION
FRACTALS
POWER-LAW BEHAVIOURS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/251854

id CONICETDig_c62c6b9ff66dd62417937380a8ff4eb8
oai_identifier_str oai:ri.conicet.gov.ar:11336/251854
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Local Einstein relation for fractalsPadilla, LorenaIguain, Jose LuisEINSTEIN RELATIONFRACTALSPOWER-LAW BEHAVIOURShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study single random walks and the electrical resistance for fractals obtained as the limit of a sequence of periodic structures. In the long-scale regime, power laws describe both the mean-square displacement of a random walk as a function of time and the electrical resistance as a function of length. We show that the corresponding power-law exponents satisfy the Einstein relation. For shorter scales, where these exponents depend on length, we find how the Einstein relation can be generalized to hold locally. All these findings were analytically derived and confirmed by numerical simulations.Fil: Padilla, Lorena. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Iguain, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaIOP Publishing2023-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/251854Padilla, Lorena; Iguain, Jose Luis; Local Einstein relation for fractals; IOP Publishing; Physica Scripta; 98; 9; 9-2023; 1-90031-8949CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/1402-4896/aceb3ainfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1402-4896/aceb3ainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:33Zoai:ri.conicet.gov.ar:11336/251854instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:34.07CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Local Einstein relation for fractals
title Local Einstein relation for fractals
spellingShingle Local Einstein relation for fractals
Padilla, Lorena
EINSTEIN RELATION
FRACTALS
POWER-LAW BEHAVIOURS
title_short Local Einstein relation for fractals
title_full Local Einstein relation for fractals
title_fullStr Local Einstein relation for fractals
title_full_unstemmed Local Einstein relation for fractals
title_sort Local Einstein relation for fractals
dc.creator.none.fl_str_mv Padilla, Lorena
Iguain, Jose Luis
author Padilla, Lorena
author_facet Padilla, Lorena
Iguain, Jose Luis
author_role author
author2 Iguain, Jose Luis
author2_role author
dc.subject.none.fl_str_mv EINSTEIN RELATION
FRACTALS
POWER-LAW BEHAVIOURS
topic EINSTEIN RELATION
FRACTALS
POWER-LAW BEHAVIOURS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study single random walks and the electrical resistance for fractals obtained as the limit of a sequence of periodic structures. In the long-scale regime, power laws describe both the mean-square displacement of a random walk as a function of time and the electrical resistance as a function of length. We show that the corresponding power-law exponents satisfy the Einstein relation. For shorter scales, where these exponents depend on length, we find how the Einstein relation can be generalized to hold locally. All these findings were analytically derived and confirmed by numerical simulations.
Fil: Padilla, Lorena. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Iguain, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
description We study single random walks and the electrical resistance for fractals obtained as the limit of a sequence of periodic structures. In the long-scale regime, power laws describe both the mean-square displacement of a random walk as a function of time and the electrical resistance as a function of length. We show that the corresponding power-law exponents satisfy the Einstein relation. For shorter scales, where these exponents depend on length, we find how the Einstein relation can be generalized to hold locally. All these findings were analytically derived and confirmed by numerical simulations.
publishDate 2023
dc.date.none.fl_str_mv 2023-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/251854
Padilla, Lorena; Iguain, Jose Luis; Local Einstein relation for fractals; IOP Publishing; Physica Scripta; 98; 9; 9-2023; 1-9
0031-8949
CONICET Digital
CONICET
url http://hdl.handle.net/11336/251854
identifier_str_mv Padilla, Lorena; Iguain, Jose Luis; Local Einstein relation for fractals; IOP Publishing; Physica Scripta; 98; 9; 9-2023; 1-9
0031-8949
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1088/1402-4896/aceb3a
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1402-4896/aceb3a
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613108248608768
score 13.070432