Nichols algebras with many cubic relations
- Autores
- Heckenberger, I.; Lochmann, A.; Vendramin, Claudio Leandro
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Nichols algebras of group type with many cubic relations are classified under a technical assumption on the structure of Hurwitz orbits of the third power of the underlying indecomposable rack. All such Nichols algebras are finite-dimensional, and their Hilbert series have a factorization into quantum integers. Also, all known finite-dimensional elementary Nichols algebras turn out to have many cubic relations. The technical assumption of our theorem can be removed if a conjecture in the theory of cellular automata can be proven.
Fil: Heckenberger, I.. Philipps Universität Marburg; Alemania
Fil: Lochmann, A.. Philipps Universität Marburg; Alemania
Fil: Vendramin, Claudio Leandro. Philipps Universität Marburg; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Nichols algebras
Hurwitz orbits
Braid group
Cellular automata - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/59632
Ver los metadatos del registro completo
| id |
CONICETDig_7a2a87844401040c8c53eb79b61ccd4e |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/59632 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Nichols algebras with many cubic relationsHeckenberger, I.Lochmann, A.Vendramin, Claudio LeandroNichols algebrasHurwitz orbitsBraid groupCellular automatahttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Nichols algebras of group type with many cubic relations are classified under a technical assumption on the structure of Hurwitz orbits of the third power of the underlying indecomposable rack. All such Nichols algebras are finite-dimensional, and their Hilbert series have a factorization into quantum integers. Also, all known finite-dimensional elementary Nichols algebras turn out to have many cubic relations. The technical assumption of our theorem can be removed if a conjecture in the theory of cellular automata can be proven.Fil: Heckenberger, I.. Philipps Universität Marburg; AlemaniaFil: Lochmann, A.. Philipps Universität Marburg; AlemaniaFil: Vendramin, Claudio Leandro. Philipps Universität Marburg; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Mathematical Society2015-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59632Heckenberger, I.; Lochmann, A.; Vendramin, Claudio Leandro; Nichols algebras with many cubic relations; American Mathematical Society; Transactions Of The American Mathematical Society; 367; 9; 12-2015; 6315-63560002-9947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1212.4330info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9947-2015-06231-Xinfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/tran/2015-367-09/S0002-9947-2015-06231-X/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T12:30:29Zoai:ri.conicet.gov.ar:11336/59632instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 12:30:29.45CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Nichols algebras with many cubic relations |
| title |
Nichols algebras with many cubic relations |
| spellingShingle |
Nichols algebras with many cubic relations Heckenberger, I. Nichols algebras Hurwitz orbits Braid group Cellular automata |
| title_short |
Nichols algebras with many cubic relations |
| title_full |
Nichols algebras with many cubic relations |
| title_fullStr |
Nichols algebras with many cubic relations |
| title_full_unstemmed |
Nichols algebras with many cubic relations |
| title_sort |
Nichols algebras with many cubic relations |
| dc.creator.none.fl_str_mv |
Heckenberger, I. Lochmann, A. Vendramin, Claudio Leandro |
| author |
Heckenberger, I. |
| author_facet |
Heckenberger, I. Lochmann, A. Vendramin, Claudio Leandro |
| author_role |
author |
| author2 |
Lochmann, A. Vendramin, Claudio Leandro |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Nichols algebras Hurwitz orbits Braid group Cellular automata |
| topic |
Nichols algebras Hurwitz orbits Braid group Cellular automata |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Nichols algebras of group type with many cubic relations are classified under a technical assumption on the structure of Hurwitz orbits of the third power of the underlying indecomposable rack. All such Nichols algebras are finite-dimensional, and their Hilbert series have a factorization into quantum integers. Also, all known finite-dimensional elementary Nichols algebras turn out to have many cubic relations. The technical assumption of our theorem can be removed if a conjecture in the theory of cellular automata can be proven. Fil: Heckenberger, I.. Philipps Universität Marburg; Alemania Fil: Lochmann, A.. Philipps Universität Marburg; Alemania Fil: Vendramin, Claudio Leandro. Philipps Universität Marburg; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
Nichols algebras of group type with many cubic relations are classified under a technical assumption on the structure of Hurwitz orbits of the third power of the underlying indecomposable rack. All such Nichols algebras are finite-dimensional, and their Hilbert series have a factorization into quantum integers. Also, all known finite-dimensional elementary Nichols algebras turn out to have many cubic relations. The technical assumption of our theorem can be removed if a conjecture in the theory of cellular automata can be proven. |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/59632 Heckenberger, I.; Lochmann, A.; Vendramin, Claudio Leandro; Nichols algebras with many cubic relations; American Mathematical Society; Transactions Of The American Mathematical Society; 367; 9; 12-2015; 6315-6356 0002-9947 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/59632 |
| identifier_str_mv |
Heckenberger, I.; Lochmann, A.; Vendramin, Claudio Leandro; Nichols algebras with many cubic relations; American Mathematical Society; Transactions Of The American Mathematical Society; 367; 9; 12-2015; 6315-6356 0002-9947 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1212.4330 info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9947-2015-06231-X info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/tran/2015-367-09/S0002-9947-2015-06231-X/ |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Mathematical Society |
| publisher.none.fl_str_mv |
American Mathematical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847427246046838784 |
| score |
13.10058 |