Braided racks, Hurwitz actions and Nichols algebras with many cubic relations

Autores
Heckenberger, I.; Lochmann, A.; Vendramin, Claudio Leandro
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We classify Nichols algebras of irreducible Yetter-Drinfeld modules over groups such that the underlying rack is braided and the homogeneous component of degree three of the Nichols algebra satisfies a given inequality. This assumption turns out to be equivalent to a factorization assumption on the Hilbert series. Besides the known Nichols algebras we obtain a new example. Our method is based on a combinatorial invariant of the Hurwitz orbits with respect to the action of the braid group on three strands.
Fil: Heckenberger, I.. Philipps-Universität Marburg; Alemania
Fil: Lochmann, A.. Philipps-Universität Marburg; Alemania
Fil: Vendramin, Claudio Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Materia
3-TRANSPOSITION GROUP
HOPF ALGEBRA
HURWITZ ACTION
NICHOLS ALGEBRA
RACK
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/217391

id CONICETDig_cc04d68deb4dfd0efae80b2614da6d2a
oai_identifier_str oai:ri.conicet.gov.ar:11336/217391
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Braided racks, Hurwitz actions and Nichols algebras with many cubic relationsHeckenberger, I.Lochmann, A.Vendramin, Claudio Leandro3-TRANSPOSITION GROUPHOPF ALGEBRAHURWITZ ACTIONNICHOLS ALGEBRARACKhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We classify Nichols algebras of irreducible Yetter-Drinfeld modules over groups such that the underlying rack is braided and the homogeneous component of degree three of the Nichols algebra satisfies a given inequality. This assumption turns out to be equivalent to a factorization assumption on the Hilbert series. Besides the known Nichols algebras we obtain a new example. Our method is based on a combinatorial invariant of the Hurwitz orbits with respect to the action of the braid group on three strands.Fil: Heckenberger, I.. Philipps-Universität Marburg; AlemaniaFil: Lochmann, A.. Philipps-Universität Marburg; AlemaniaFil: Vendramin, Claudio Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaSpringer2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/217391Heckenberger, I.; Lochmann, A.; Vendramin, Claudio Leandro; Braided racks, Hurwitz actions and Nichols algebras with many cubic relations; Springer; Transformation Groups; 17; 1; 3-2012; 157-1941083-4362CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00031-012-9176-7info:eu-repo/semantics/altIdentifier/doi/10.1007/s00031-012-9176-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:16:36Zoai:ri.conicet.gov.ar:11336/217391instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:16:36.766CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Braided racks, Hurwitz actions and Nichols algebras with many cubic relations
title Braided racks, Hurwitz actions and Nichols algebras with many cubic relations
spellingShingle Braided racks, Hurwitz actions and Nichols algebras with many cubic relations
Heckenberger, I.
3-TRANSPOSITION GROUP
HOPF ALGEBRA
HURWITZ ACTION
NICHOLS ALGEBRA
RACK
title_short Braided racks, Hurwitz actions and Nichols algebras with many cubic relations
title_full Braided racks, Hurwitz actions and Nichols algebras with many cubic relations
title_fullStr Braided racks, Hurwitz actions and Nichols algebras with many cubic relations
title_full_unstemmed Braided racks, Hurwitz actions and Nichols algebras with many cubic relations
title_sort Braided racks, Hurwitz actions and Nichols algebras with many cubic relations
dc.creator.none.fl_str_mv Heckenberger, I.
Lochmann, A.
Vendramin, Claudio Leandro
author Heckenberger, I.
author_facet Heckenberger, I.
Lochmann, A.
Vendramin, Claudio Leandro
author_role author
author2 Lochmann, A.
Vendramin, Claudio Leandro
author2_role author
author
dc.subject.none.fl_str_mv 3-TRANSPOSITION GROUP
HOPF ALGEBRA
HURWITZ ACTION
NICHOLS ALGEBRA
RACK
topic 3-TRANSPOSITION GROUP
HOPF ALGEBRA
HURWITZ ACTION
NICHOLS ALGEBRA
RACK
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We classify Nichols algebras of irreducible Yetter-Drinfeld modules over groups such that the underlying rack is braided and the homogeneous component of degree three of the Nichols algebra satisfies a given inequality. This assumption turns out to be equivalent to a factorization assumption on the Hilbert series. Besides the known Nichols algebras we obtain a new example. Our method is based on a combinatorial invariant of the Hurwitz orbits with respect to the action of the braid group on three strands.
Fil: Heckenberger, I.. Philipps-Universität Marburg; Alemania
Fil: Lochmann, A.. Philipps-Universität Marburg; Alemania
Fil: Vendramin, Claudio Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
description We classify Nichols algebras of irreducible Yetter-Drinfeld modules over groups such that the underlying rack is braided and the homogeneous component of degree three of the Nichols algebra satisfies a given inequality. This assumption turns out to be equivalent to a factorization assumption on the Hilbert series. Besides the known Nichols algebras we obtain a new example. Our method is based on a combinatorial invariant of the Hurwitz orbits with respect to the action of the braid group on three strands.
publishDate 2012
dc.date.none.fl_str_mv 2012-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/217391
Heckenberger, I.; Lochmann, A.; Vendramin, Claudio Leandro; Braided racks, Hurwitz actions and Nichols algebras with many cubic relations; Springer; Transformation Groups; 17; 1; 3-2012; 157-194
1083-4362
CONICET Digital
CONICET
url http://hdl.handle.net/11336/217391
identifier_str_mv Heckenberger, I.; Lochmann, A.; Vendramin, Claudio Leandro; Braided racks, Hurwitz actions and Nichols algebras with many cubic relations; Springer; Transformation Groups; 17; 1; 3-2012; 157-194
1083-4362
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00031-012-9176-7
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00031-012-9176-7
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614112762396672
score 13.070432