Braided racks, Hurwitz actions and Nichols algebras with many cubic relations
- Autores
- Heckenberger, I.; Lochmann, A.; Vendramin, Claudio Leandro
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We classify Nichols algebras of irreducible Yetter-Drinfeld modules over groups such that the underlying rack is braided and the homogeneous component of degree three of the Nichols algebra satisfies a given inequality. This assumption turns out to be equivalent to a factorization assumption on the Hilbert series. Besides the known Nichols algebras we obtain a new example. Our method is based on a combinatorial invariant of the Hurwitz orbits with respect to the action of the braid group on three strands.
Fil: Heckenberger, I.. Philipps-Universität Marburg; Alemania
Fil: Lochmann, A.. Philipps-Universität Marburg; Alemania
Fil: Vendramin, Claudio Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
3-TRANSPOSITION GROUP
HOPF ALGEBRA
HURWITZ ACTION
NICHOLS ALGEBRA
RACK - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/217391
Ver los metadatos del registro completo
id |
CONICETDig_cc04d68deb4dfd0efae80b2614da6d2a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/217391 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Braided racks, Hurwitz actions and Nichols algebras with many cubic relationsHeckenberger, I.Lochmann, A.Vendramin, Claudio Leandro3-TRANSPOSITION GROUPHOPF ALGEBRAHURWITZ ACTIONNICHOLS ALGEBRARACKhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We classify Nichols algebras of irreducible Yetter-Drinfeld modules over groups such that the underlying rack is braided and the homogeneous component of degree three of the Nichols algebra satisfies a given inequality. This assumption turns out to be equivalent to a factorization assumption on the Hilbert series. Besides the known Nichols algebras we obtain a new example. Our method is based on a combinatorial invariant of the Hurwitz orbits with respect to the action of the braid group on three strands.Fil: Heckenberger, I.. Philipps-Universität Marburg; AlemaniaFil: Lochmann, A.. Philipps-Universität Marburg; AlemaniaFil: Vendramin, Claudio Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaSpringer2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/217391Heckenberger, I.; Lochmann, A.; Vendramin, Claudio Leandro; Braided racks, Hurwitz actions and Nichols algebras with many cubic relations; Springer; Transformation Groups; 17; 1; 3-2012; 157-1941083-4362CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00031-012-9176-7info:eu-repo/semantics/altIdentifier/doi/10.1007/s00031-012-9176-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:16:36Zoai:ri.conicet.gov.ar:11336/217391instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:16:36.766CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Braided racks, Hurwitz actions and Nichols algebras with many cubic relations |
title |
Braided racks, Hurwitz actions and Nichols algebras with many cubic relations |
spellingShingle |
Braided racks, Hurwitz actions and Nichols algebras with many cubic relations Heckenberger, I. 3-TRANSPOSITION GROUP HOPF ALGEBRA HURWITZ ACTION NICHOLS ALGEBRA RACK |
title_short |
Braided racks, Hurwitz actions and Nichols algebras with many cubic relations |
title_full |
Braided racks, Hurwitz actions and Nichols algebras with many cubic relations |
title_fullStr |
Braided racks, Hurwitz actions and Nichols algebras with many cubic relations |
title_full_unstemmed |
Braided racks, Hurwitz actions and Nichols algebras with many cubic relations |
title_sort |
Braided racks, Hurwitz actions and Nichols algebras with many cubic relations |
dc.creator.none.fl_str_mv |
Heckenberger, I. Lochmann, A. Vendramin, Claudio Leandro |
author |
Heckenberger, I. |
author_facet |
Heckenberger, I. Lochmann, A. Vendramin, Claudio Leandro |
author_role |
author |
author2 |
Lochmann, A. Vendramin, Claudio Leandro |
author2_role |
author author |
dc.subject.none.fl_str_mv |
3-TRANSPOSITION GROUP HOPF ALGEBRA HURWITZ ACTION NICHOLS ALGEBRA RACK |
topic |
3-TRANSPOSITION GROUP HOPF ALGEBRA HURWITZ ACTION NICHOLS ALGEBRA RACK |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We classify Nichols algebras of irreducible Yetter-Drinfeld modules over groups such that the underlying rack is braided and the homogeneous component of degree three of the Nichols algebra satisfies a given inequality. This assumption turns out to be equivalent to a factorization assumption on the Hilbert series. Besides the known Nichols algebras we obtain a new example. Our method is based on a combinatorial invariant of the Hurwitz orbits with respect to the action of the braid group on three strands. Fil: Heckenberger, I.. Philipps-Universität Marburg; Alemania Fil: Lochmann, A.. Philipps-Universität Marburg; Alemania Fil: Vendramin, Claudio Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
We classify Nichols algebras of irreducible Yetter-Drinfeld modules over groups such that the underlying rack is braided and the homogeneous component of degree three of the Nichols algebra satisfies a given inequality. This assumption turns out to be equivalent to a factorization assumption on the Hilbert series. Besides the known Nichols algebras we obtain a new example. Our method is based on a combinatorial invariant of the Hurwitz orbits with respect to the action of the braid group on three strands. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/217391 Heckenberger, I.; Lochmann, A.; Vendramin, Claudio Leandro; Braided racks, Hurwitz actions and Nichols algebras with many cubic relations; Springer; Transformation Groups; 17; 1; 3-2012; 157-194 1083-4362 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/217391 |
identifier_str_mv |
Heckenberger, I.; Lochmann, A.; Vendramin, Claudio Leandro; Braided racks, Hurwitz actions and Nichols algebras with many cubic relations; Springer; Transformation Groups; 17; 1; 3-2012; 157-194 1083-4362 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00031-012-9176-7 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00031-012-9176-7 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614112762396672 |
score |
13.070432 |