On tau-tilting subcategories
- Autores
- Asadollahi, Javad; Sadeghi, Somayeh; Treffinger Cienfuegos, Hipolito José
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The main theme of this paper is to study τ -tilting subcategories in an abelian category A with enough projective objects. We introduce the notion of τ -cotorsion torsion triples and investigate a bijection between the collection of τ -cotorsion torsion triples in A and the collection of support τ -tilting subcategories of A , generalizing the bijection by Bauer, Botnan, Oppermann, and Steen between the collection of cotorsion torsion triples and the collection of tilting subcategories of A . General definitions and results are exemplified using persistent modules. If A=Mod-R , where R is a unitary associative ring, we characterize all support τ -tilting (resp. all support τ− -tilting) subcategories of Mod-R in terms of finendo quasitilting (resp. quasicotilting) modules. As a result, it will be shown that every silting module (resp. every cosilting module) induces a support τ -tilting (resp. support τ− -tilting) subcategory of Mod-R . We also study the theory in Rep(Q,A) , where Q is a finite and acyclic quiver. In particular, we give an algorithm to construct support τ -tilting subcategories in Rep(Q,A) from certain support τ -tilting subcategories of A .
Fil: Asadollahi, Javad. University Of Isfahan; Irán
Fil: Sadeghi, Somayeh. University Of Isfahan; Irán
Fil: Treffinger Cienfuegos, Hipolito José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
ABELIAN CATEGORY
(Τ-)TILTING SUBCATEGORY
TORSION THEORY
SILTING MODULE
QUIVER REPRESENTATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/235363
Ver los metadatos del registro completo
id |
CONICETDig_467901fccc3ad6a08fe678bd7c40de18 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/235363 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On tau-tilting subcategoriesAsadollahi, JavadSadeghi, SomayehTreffinger Cienfuegos, Hipolito JoséABELIAN CATEGORY(Τ-)TILTING SUBCATEGORYTORSION THEORYSILTING MODULEQUIVER REPRESENTATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The main theme of this paper is to study τ -tilting subcategories in an abelian category A with enough projective objects. We introduce the notion of τ -cotorsion torsion triples and investigate a bijection between the collection of τ -cotorsion torsion triples in A and the collection of support τ -tilting subcategories of A , generalizing the bijection by Bauer, Botnan, Oppermann, and Steen between the collection of cotorsion torsion triples and the collection of tilting subcategories of A . General definitions and results are exemplified using persistent modules. If A=Mod-R , where R is a unitary associative ring, we characterize all support τ -tilting (resp. all support τ− -tilting) subcategories of Mod-R in terms of finendo quasitilting (resp. quasicotilting) modules. As a result, it will be shown that every silting module (resp. every cosilting module) induces a support τ -tilting (resp. support τ− -tilting) subcategory of Mod-R . We also study the theory in Rep(Q,A) , where Q is a finite and acyclic quiver. In particular, we give an algorithm to construct support τ -tilting subcategories in Rep(Q,A) from certain support τ -tilting subcategories of A .Fil: Asadollahi, Javad. University Of Isfahan; IránFil: Sadeghi, Somayeh. University Of Isfahan; IránFil: Treffinger Cienfuegos, Hipolito José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaCanadian Mathematical Soc2024-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/235363Asadollahi, Javad; Sadeghi, Somayeh; Treffinger Cienfuegos, Hipolito José; On tau-tilting subcategories; Canadian Mathematical Soc; Canadian Journal Of Mathematics; 3-2024; 1-380008-414XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/product/identifier/S0008414X24000221/type/journal_articleinfo:eu-repo/semantics/altIdentifier/doi/10.4153/S0008414X24000221info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2207.00457info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:09:20Zoai:ri.conicet.gov.ar:11336/235363instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:09:20.369CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On tau-tilting subcategories |
title |
On tau-tilting subcategories |
spellingShingle |
On tau-tilting subcategories Asadollahi, Javad ABELIAN CATEGORY (Τ-)TILTING SUBCATEGORY TORSION THEORY SILTING MODULE QUIVER REPRESENTATION |
title_short |
On tau-tilting subcategories |
title_full |
On tau-tilting subcategories |
title_fullStr |
On tau-tilting subcategories |
title_full_unstemmed |
On tau-tilting subcategories |
title_sort |
On tau-tilting subcategories |
dc.creator.none.fl_str_mv |
Asadollahi, Javad Sadeghi, Somayeh Treffinger Cienfuegos, Hipolito José |
author |
Asadollahi, Javad |
author_facet |
Asadollahi, Javad Sadeghi, Somayeh Treffinger Cienfuegos, Hipolito José |
author_role |
author |
author2 |
Sadeghi, Somayeh Treffinger Cienfuegos, Hipolito José |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ABELIAN CATEGORY (Τ-)TILTING SUBCATEGORY TORSION THEORY SILTING MODULE QUIVER REPRESENTATION |
topic |
ABELIAN CATEGORY (Τ-)TILTING SUBCATEGORY TORSION THEORY SILTING MODULE QUIVER REPRESENTATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The main theme of this paper is to study τ -tilting subcategories in an abelian category A with enough projective objects. We introduce the notion of τ -cotorsion torsion triples and investigate a bijection between the collection of τ -cotorsion torsion triples in A and the collection of support τ -tilting subcategories of A , generalizing the bijection by Bauer, Botnan, Oppermann, and Steen between the collection of cotorsion torsion triples and the collection of tilting subcategories of A . General definitions and results are exemplified using persistent modules. If A=Mod-R , where R is a unitary associative ring, we characterize all support τ -tilting (resp. all support τ− -tilting) subcategories of Mod-R in terms of finendo quasitilting (resp. quasicotilting) modules. As a result, it will be shown that every silting module (resp. every cosilting module) induces a support τ -tilting (resp. support τ− -tilting) subcategory of Mod-R . We also study the theory in Rep(Q,A) , where Q is a finite and acyclic quiver. In particular, we give an algorithm to construct support τ -tilting subcategories in Rep(Q,A) from certain support τ -tilting subcategories of A . Fil: Asadollahi, Javad. University Of Isfahan; Irán Fil: Sadeghi, Somayeh. University Of Isfahan; Irán Fil: Treffinger Cienfuegos, Hipolito José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
The main theme of this paper is to study τ -tilting subcategories in an abelian category A with enough projective objects. We introduce the notion of τ -cotorsion torsion triples and investigate a bijection between the collection of τ -cotorsion torsion triples in A and the collection of support τ -tilting subcategories of A , generalizing the bijection by Bauer, Botnan, Oppermann, and Steen between the collection of cotorsion torsion triples and the collection of tilting subcategories of A . General definitions and results are exemplified using persistent modules. If A=Mod-R , where R is a unitary associative ring, we characterize all support τ -tilting (resp. all support τ− -tilting) subcategories of Mod-R in terms of finendo quasitilting (resp. quasicotilting) modules. As a result, it will be shown that every silting module (resp. every cosilting module) induces a support τ -tilting (resp. support τ− -tilting) subcategory of Mod-R . We also study the theory in Rep(Q,A) , where Q is a finite and acyclic quiver. In particular, we give an algorithm to construct support τ -tilting subcategories in Rep(Q,A) from certain support τ -tilting subcategories of A . |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/235363 Asadollahi, Javad; Sadeghi, Somayeh; Treffinger Cienfuegos, Hipolito José; On tau-tilting subcategories; Canadian Mathematical Soc; Canadian Journal Of Mathematics; 3-2024; 1-38 0008-414X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/235363 |
identifier_str_mv |
Asadollahi, Javad; Sadeghi, Somayeh; Treffinger Cienfuegos, Hipolito José; On tau-tilting subcategories; Canadian Mathematical Soc; Canadian Journal Of Mathematics; 3-2024; 1-38 0008-414X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/product/identifier/S0008414X24000221/type/journal_article info:eu-repo/semantics/altIdentifier/doi/10.4153/S0008414X24000221 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2207.00457 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Canadian Mathematical Soc |
publisher.none.fl_str_mv |
Canadian Mathematical Soc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613970941444096 |
score |
13.070432 |