Tensor completion algorithms for estimating missing values in multi-channel audio signals
- Autores
- Ding, Wenjian; Sun, Zhe; Wu, Xingxing; Yang, Zhenglu; Solé Casals, Jordi; Caiafa, César Federico
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Audio inpainting is a widely used technology in the real world since audio signals with missing data are pervasive in many scenarios. The majority of existing works address the time gaps in single-channel audio signals, while completing multi-channel audio signals is rarely investigated.In this work, we tackle this issue using four different tensor completion algorithms and we evaluate them on speech audio datasets with gaps in the time domain. Based on extensive quantitative and qualitative experiments, the tensor completion algorithms generally achieve a superior predictive performance, including when the gap duration of the signals reaches values of up to 200 ms. Specifically, the experimental results illustrate that all of the applied tensor completion algorithms yield at least 56% improvement in signal restoration performance compared with single-channel based methods. Therefore, the tensor based approaches can capture the underlying latent structure over different channels to reconstruct incomplete multi-channel data.
Fil: Ding, Wenjian. Nankai University; China
Fil: Sun, Zhe. Nankai University; China
Fil: Wu, Xingxing. Nankai University; China
Fil: Yang, Zhenglu. Nankai University; China
Fil: Solé Casals, Jordi. University of Catalonia; España
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina - Materia
-
audio impainting
tensor completion
signal reconstruction
multichannel signals - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/148943
Ver los metadatos del registro completo
id |
CONICETDig_87e948e6915b09f26f47f3f4debdc5d6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/148943 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Tensor completion algorithms for estimating missing values in multi-channel audio signalsDing, WenjianSun, ZheWu, XingxingYang, ZhengluSolé Casals, JordiCaiafa, César Federicoaudio impaintingtensor completionsignal reconstructionmultichannel signalshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Audio inpainting is a widely used technology in the real world since audio signals with missing data are pervasive in many scenarios. The majority of existing works address the time gaps in single-channel audio signals, while completing multi-channel audio signals is rarely investigated.In this work, we tackle this issue using four different tensor completion algorithms and we evaluate them on speech audio datasets with gaps in the time domain. Based on extensive quantitative and qualitative experiments, the tensor completion algorithms generally achieve a superior predictive performance, including when the gap duration of the signals reaches values of up to 200 ms. Specifically, the experimental results illustrate that all of the applied tensor completion algorithms yield at least 56% improvement in signal restoration performance compared with single-channel based methods. Therefore, the tensor based approaches can capture the underlying latent structure over different channels to reconstruct incomplete multi-channel data.Fil: Ding, Wenjian. Nankai University; ChinaFil: Sun, Zhe. Nankai University; ChinaFil: Wu, Xingxing. Nankai University; ChinaFil: Yang, Zhenglu. Nankai University; ChinaFil: Solé Casals, Jordi. University of Catalonia; EspañaFil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaPergamon-Elsevier Science Ltd2021-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/148943Ding, Wenjian; Sun, Zhe; Wu, Xingxing; Yang, Zhenglu; Solé Casals, Jordi; et al.; Tensor completion algorithms for estimating missing values in multi-channel audio signals; Pergamon-Elsevier Science Ltd; Computers & Electrical Engineering; 11-2021; 107561, 1-120045-7906CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0045790621005036info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compeleceng.2021.107561info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:04Zoai:ri.conicet.gov.ar:11336/148943instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:04.256CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Tensor completion algorithms for estimating missing values in multi-channel audio signals |
title |
Tensor completion algorithms for estimating missing values in multi-channel audio signals |
spellingShingle |
Tensor completion algorithms for estimating missing values in multi-channel audio signals Ding, Wenjian audio impainting tensor completion signal reconstruction multichannel signals |
title_short |
Tensor completion algorithms for estimating missing values in multi-channel audio signals |
title_full |
Tensor completion algorithms for estimating missing values in multi-channel audio signals |
title_fullStr |
Tensor completion algorithms for estimating missing values in multi-channel audio signals |
title_full_unstemmed |
Tensor completion algorithms for estimating missing values in multi-channel audio signals |
title_sort |
Tensor completion algorithms for estimating missing values in multi-channel audio signals |
dc.creator.none.fl_str_mv |
Ding, Wenjian Sun, Zhe Wu, Xingxing Yang, Zhenglu Solé Casals, Jordi Caiafa, César Federico |
author |
Ding, Wenjian |
author_facet |
Ding, Wenjian Sun, Zhe Wu, Xingxing Yang, Zhenglu Solé Casals, Jordi Caiafa, César Federico |
author_role |
author |
author2 |
Sun, Zhe Wu, Xingxing Yang, Zhenglu Solé Casals, Jordi Caiafa, César Federico |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
audio impainting tensor completion signal reconstruction multichannel signals |
topic |
audio impainting tensor completion signal reconstruction multichannel signals |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Audio inpainting is a widely used technology in the real world since audio signals with missing data are pervasive in many scenarios. The majority of existing works address the time gaps in single-channel audio signals, while completing multi-channel audio signals is rarely investigated.In this work, we tackle this issue using four different tensor completion algorithms and we evaluate them on speech audio datasets with gaps in the time domain. Based on extensive quantitative and qualitative experiments, the tensor completion algorithms generally achieve a superior predictive performance, including when the gap duration of the signals reaches values of up to 200 ms. Specifically, the experimental results illustrate that all of the applied tensor completion algorithms yield at least 56% improvement in signal restoration performance compared with single-channel based methods. Therefore, the tensor based approaches can capture the underlying latent structure over different channels to reconstruct incomplete multi-channel data. Fil: Ding, Wenjian. Nankai University; China Fil: Sun, Zhe. Nankai University; China Fil: Wu, Xingxing. Nankai University; China Fil: Yang, Zhenglu. Nankai University; China Fil: Solé Casals, Jordi. University of Catalonia; España Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina |
description |
Audio inpainting is a widely used technology in the real world since audio signals with missing data are pervasive in many scenarios. The majority of existing works address the time gaps in single-channel audio signals, while completing multi-channel audio signals is rarely investigated.In this work, we tackle this issue using four different tensor completion algorithms and we evaluate them on speech audio datasets with gaps in the time domain. Based on extensive quantitative and qualitative experiments, the tensor completion algorithms generally achieve a superior predictive performance, including when the gap duration of the signals reaches values of up to 200 ms. Specifically, the experimental results illustrate that all of the applied tensor completion algorithms yield at least 56% improvement in signal restoration performance compared with single-channel based methods. Therefore, the tensor based approaches can capture the underlying latent structure over different channels to reconstruct incomplete multi-channel data. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/148943 Ding, Wenjian; Sun, Zhe; Wu, Xingxing; Yang, Zhenglu; Solé Casals, Jordi; et al.; Tensor completion algorithms for estimating missing values in multi-channel audio signals; Pergamon-Elsevier Science Ltd; Computers & Electrical Engineering; 11-2021; 107561, 1-12 0045-7906 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/148943 |
identifier_str_mv |
Ding, Wenjian; Sun, Zhe; Wu, Xingxing; Yang, Zhenglu; Solé Casals, Jordi; et al.; Tensor completion algorithms for estimating missing values in multi-channel audio signals; Pergamon-Elsevier Science Ltd; Computers & Electrical Engineering; 11-2021; 107561, 1-12 0045-7906 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0045790621005036 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compeleceng.2021.107561 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268834929573888 |
score |
12.885934 |