Tensor completion algorithms for estimating missing values in multi-channel audio signals

Autores
Ding, Wenjian; Sun, Zhe; Wu, Xingxing; Yang, Zhenglu; Solé Casals, Jordi; Caiafa, César Federico
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Audio inpainting is a widely used technology in the real world since audio signals with missing data are pervasive in many scenarios. The majority of existing works address the time gaps in single-channel audio signals, while completing multi-channel audio signals is rarely investigated.In this work, we tackle this issue using four different tensor completion algorithms and we evaluate them on speech audio datasets with gaps in the time domain. Based on extensive quantitative and qualitative experiments, the tensor completion algorithms generally achieve a superior predictive performance, including when the gap duration of the signals reaches values of up to 200 ms. Specifically, the experimental results illustrate that all of the applied tensor completion algorithms yield at least 56% improvement in signal restoration performance compared with single-channel based methods. Therefore, the tensor based approaches can capture the underlying latent structure over different channels to reconstruct incomplete multi-channel data.
Fil: Ding, Wenjian. Nankai University; China
Fil: Sun, Zhe. Nankai University; China
Fil: Wu, Xingxing. Nankai University; China
Fil: Yang, Zhenglu. Nankai University; China
Fil: Solé Casals, Jordi. University of Catalonia; España
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Materia
audio impainting
tensor completion
signal reconstruction
multichannel signals
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/148943

id CONICETDig_87e948e6915b09f26f47f3f4debdc5d6
oai_identifier_str oai:ri.conicet.gov.ar:11336/148943
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Tensor completion algorithms for estimating missing values in multi-channel audio signalsDing, WenjianSun, ZheWu, XingxingYang, ZhengluSolé Casals, JordiCaiafa, César Federicoaudio impaintingtensor completionsignal reconstructionmultichannel signalshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Audio inpainting is a widely used technology in the real world since audio signals with missing data are pervasive in many scenarios. The majority of existing works address the time gaps in single-channel audio signals, while completing multi-channel audio signals is rarely investigated.In this work, we tackle this issue using four different tensor completion algorithms and we evaluate them on speech audio datasets with gaps in the time domain. Based on extensive quantitative and qualitative experiments, the tensor completion algorithms generally achieve a superior predictive performance, including when the gap duration of the signals reaches values of up to 200 ms. Specifically, the experimental results illustrate that all of the applied tensor completion algorithms yield at least 56% improvement in signal restoration performance compared with single-channel based methods. Therefore, the tensor based approaches can capture the underlying latent structure over different channels to reconstruct incomplete multi-channel data.Fil: Ding, Wenjian. Nankai University; ChinaFil: Sun, Zhe. Nankai University; ChinaFil: Wu, Xingxing. Nankai University; ChinaFil: Yang, Zhenglu. Nankai University; ChinaFil: Solé Casals, Jordi. University of Catalonia; EspañaFil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaPergamon-Elsevier Science Ltd2021-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/148943Ding, Wenjian; Sun, Zhe; Wu, Xingxing; Yang, Zhenglu; Solé Casals, Jordi; et al.; Tensor completion algorithms for estimating missing values in multi-channel audio signals; Pergamon-Elsevier Science Ltd; Computers & Electrical Engineering; 11-2021; 107561, 1-120045-7906CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0045790621005036info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compeleceng.2021.107561info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:04Zoai:ri.conicet.gov.ar:11336/148943instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:04.256CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Tensor completion algorithms for estimating missing values in multi-channel audio signals
title Tensor completion algorithms for estimating missing values in multi-channel audio signals
spellingShingle Tensor completion algorithms for estimating missing values in multi-channel audio signals
Ding, Wenjian
audio impainting
tensor completion
signal reconstruction
multichannel signals
title_short Tensor completion algorithms for estimating missing values in multi-channel audio signals
title_full Tensor completion algorithms for estimating missing values in multi-channel audio signals
title_fullStr Tensor completion algorithms for estimating missing values in multi-channel audio signals
title_full_unstemmed Tensor completion algorithms for estimating missing values in multi-channel audio signals
title_sort Tensor completion algorithms for estimating missing values in multi-channel audio signals
dc.creator.none.fl_str_mv Ding, Wenjian
Sun, Zhe
Wu, Xingxing
Yang, Zhenglu
Solé Casals, Jordi
Caiafa, César Federico
author Ding, Wenjian
author_facet Ding, Wenjian
Sun, Zhe
Wu, Xingxing
Yang, Zhenglu
Solé Casals, Jordi
Caiafa, César Federico
author_role author
author2 Sun, Zhe
Wu, Xingxing
Yang, Zhenglu
Solé Casals, Jordi
Caiafa, César Federico
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv audio impainting
tensor completion
signal reconstruction
multichannel signals
topic audio impainting
tensor completion
signal reconstruction
multichannel signals
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Audio inpainting is a widely used technology in the real world since audio signals with missing data are pervasive in many scenarios. The majority of existing works address the time gaps in single-channel audio signals, while completing multi-channel audio signals is rarely investigated.In this work, we tackle this issue using four different tensor completion algorithms and we evaluate them on speech audio datasets with gaps in the time domain. Based on extensive quantitative and qualitative experiments, the tensor completion algorithms generally achieve a superior predictive performance, including when the gap duration of the signals reaches values of up to 200 ms. Specifically, the experimental results illustrate that all of the applied tensor completion algorithms yield at least 56% improvement in signal restoration performance compared with single-channel based methods. Therefore, the tensor based approaches can capture the underlying latent structure over different channels to reconstruct incomplete multi-channel data.
Fil: Ding, Wenjian. Nankai University; China
Fil: Sun, Zhe. Nankai University; China
Fil: Wu, Xingxing. Nankai University; China
Fil: Yang, Zhenglu. Nankai University; China
Fil: Solé Casals, Jordi. University of Catalonia; España
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
description Audio inpainting is a widely used technology in the real world since audio signals with missing data are pervasive in many scenarios. The majority of existing works address the time gaps in single-channel audio signals, while completing multi-channel audio signals is rarely investigated.In this work, we tackle this issue using four different tensor completion algorithms and we evaluate them on speech audio datasets with gaps in the time domain. Based on extensive quantitative and qualitative experiments, the tensor completion algorithms generally achieve a superior predictive performance, including when the gap duration of the signals reaches values of up to 200 ms. Specifically, the experimental results illustrate that all of the applied tensor completion algorithms yield at least 56% improvement in signal restoration performance compared with single-channel based methods. Therefore, the tensor based approaches can capture the underlying latent structure over different channels to reconstruct incomplete multi-channel data.
publishDate 2021
dc.date.none.fl_str_mv 2021-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/148943
Ding, Wenjian; Sun, Zhe; Wu, Xingxing; Yang, Zhenglu; Solé Casals, Jordi; et al.; Tensor completion algorithms for estimating missing values in multi-channel audio signals; Pergamon-Elsevier Science Ltd; Computers & Electrical Engineering; 11-2021; 107561, 1-12
0045-7906
CONICET Digital
CONICET
url http://hdl.handle.net/11336/148943
identifier_str_mv Ding, Wenjian; Sun, Zhe; Wu, Xingxing; Yang, Zhenglu; Solé Casals, Jordi; et al.; Tensor completion algorithms for estimating missing values in multi-channel audio signals; Pergamon-Elsevier Science Ltd; Computers & Electrical Engineering; 11-2021; 107561, 1-12
0045-7906
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0045790621005036
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compeleceng.2021.107561
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268834929573888
score 12.885934