Universal deformation formulas and braided module algebras

Autores
Guccione, Jorge Alberto; Guccione, Juan Jose; Valqui, Christian
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study formal deformations of a crossed product S(V)#fG, of a polynomial algebra with a group, induced from a universal deformation formula introduced by Witherspoon. These deformations arise from braided actions of Hopf algebras generated by automorphisms and skew derivations. We show that they are non-trivial in the characteristic free context, even if G is infinite, by showing that their infinitesimals are not coboundaries. For this we construct a new complex which computes the Hochschild cohomology of S(V)#fG.
Fil: Guccione, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Guccione, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Valqui, Christian. Pontificia Universidad Católica de Perú; Perú
Materia
Crossed Product
Deformation
Hochschild Cohomology
Primary
Secondary
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/68459

id CONICETDig_78875a6055d37974f555099705f9703e
oai_identifier_str oai:ri.conicet.gov.ar:11336/68459
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Universal deformation formulas and braided module algebrasGuccione, Jorge AlbertoGuccione, Juan JoseValqui, ChristianCrossed ProductDeformationHochschild CohomologyPrimarySecondaryhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study formal deformations of a crossed product S(V)#fG, of a polynomial algebra with a group, induced from a universal deformation formula introduced by Witherspoon. These deformations arise from braided actions of Hopf algebras generated by automorphisms and skew derivations. We show that they are non-trivial in the characteristic free context, even if G is infinite, by showing that their infinitesimals are not coboundaries. For this we construct a new complex which computes the Hochschild cohomology of S(V)#fG.Fil: Guccione, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Guccione, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Valqui, Christian. Pontificia Universidad Católica de Perú; PerúAcademic Press Inc Elsevier Science2011-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/68459Guccione, Jorge Alberto; Guccione, Juan Jose; Valqui, Christian; Universal deformation formulas and braided module algebras; Academic Press Inc Elsevier Science; Journal of Algebra; 330; 1; 3-2011; 263-2970021-8693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2010.12.022info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869311000044info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0912.3159info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:51:13Zoai:ri.conicet.gov.ar:11336/68459instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:51:13.535CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Universal deformation formulas and braided module algebras
title Universal deformation formulas and braided module algebras
spellingShingle Universal deformation formulas and braided module algebras
Guccione, Jorge Alberto
Crossed Product
Deformation
Hochschild Cohomology
Primary
Secondary
title_short Universal deformation formulas and braided module algebras
title_full Universal deformation formulas and braided module algebras
title_fullStr Universal deformation formulas and braided module algebras
title_full_unstemmed Universal deformation formulas and braided module algebras
title_sort Universal deformation formulas and braided module algebras
dc.creator.none.fl_str_mv Guccione, Jorge Alberto
Guccione, Juan Jose
Valqui, Christian
author Guccione, Jorge Alberto
author_facet Guccione, Jorge Alberto
Guccione, Juan Jose
Valqui, Christian
author_role author
author2 Guccione, Juan Jose
Valqui, Christian
author2_role author
author
dc.subject.none.fl_str_mv Crossed Product
Deformation
Hochschild Cohomology
Primary
Secondary
topic Crossed Product
Deformation
Hochschild Cohomology
Primary
Secondary
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study formal deformations of a crossed product S(V)#fG, of a polynomial algebra with a group, induced from a universal deformation formula introduced by Witherspoon. These deformations arise from braided actions of Hopf algebras generated by automorphisms and skew derivations. We show that they are non-trivial in the characteristic free context, even if G is infinite, by showing that their infinitesimals are not coboundaries. For this we construct a new complex which computes the Hochschild cohomology of S(V)#fG.
Fil: Guccione, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Guccione, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Valqui, Christian. Pontificia Universidad Católica de Perú; Perú
description We study formal deformations of a crossed product S(V)#fG, of a polynomial algebra with a group, induced from a universal deformation formula introduced by Witherspoon. These deformations arise from braided actions of Hopf algebras generated by automorphisms and skew derivations. We show that they are non-trivial in the characteristic free context, even if G is infinite, by showing that their infinitesimals are not coboundaries. For this we construct a new complex which computes the Hochschild cohomology of S(V)#fG.
publishDate 2011
dc.date.none.fl_str_mv 2011-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/68459
Guccione, Jorge Alberto; Guccione, Juan Jose; Valqui, Christian; Universal deformation formulas and braided module algebras; Academic Press Inc Elsevier Science; Journal of Algebra; 330; 1; 3-2011; 263-297
0021-8693
CONICET Digital
CONICET
url http://hdl.handle.net/11336/68459
identifier_str_mv Guccione, Jorge Alberto; Guccione, Juan Jose; Valqui, Christian; Universal deformation formulas and braided module algebras; Academic Press Inc Elsevier Science; Journal of Algebra; 330; 1; 3-2011; 263-297
0021-8693
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2010.12.022
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869311000044
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0912.3159
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613575938670592
score 13.070432