Graded braided commutativity in Hochschild cohomology
- Autores
- Cóppola, Claudio Javier; Solotar, Andrea Leonor
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove the graded braided commutativity of the Hochschild cohomology of A with trivial coefficients, where A is a braided Hopf algebra in the category of Yetter-Drinfeld modules over the group algebra of an abelian group, under some finiteness conditions on a projective resolution of A as A-bimodule. This is a generalization of a result by Mastnak, Pevtsova, Schauenburg and Witherspoon to a context which includes Nichols algebras such as the Jordan and the super Jordan plane. We prove this result by constructing a coduoid-up-to-homotopy structure on the aforementioned projective resolution in the duoidal category of chain complexes of A-bimodules. We also prove that the Hochschild complex of a braided bialgebra A in an arbitrary braided monoidal category is a cocommutative comonoid up to homotopy with the deconcatenation product which induces the cup product in Hochschild cohomology.
Fil: Cóppola, Claudio Javier. Universidad de la República; Uruguay
Fil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Braiding
Hochschild
cohomology
product - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/255043
Ver los metadatos del registro completo
id |
CONICETDig_164a707038a8d72f428a2d9984256c0a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/255043 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Graded braided commutativity in Hochschild cohomologyCóppola, Claudio JavierSolotar, Andrea LeonorBraidingHochschildcohomologyproducthttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove the graded braided commutativity of the Hochschild cohomology of A with trivial coefficients, where A is a braided Hopf algebra in the category of Yetter-Drinfeld modules over the group algebra of an abelian group, under some finiteness conditions on a projective resolution of A as A-bimodule. This is a generalization of a result by Mastnak, Pevtsova, Schauenburg and Witherspoon to a context which includes Nichols algebras such as the Jordan and the super Jordan plane. We prove this result by constructing a coduoid-up-to-homotopy structure on the aforementioned projective resolution in the duoidal category of chain complexes of A-bimodules. We also prove that the Hochschild complex of a braided bialgebra A in an arbitrary braided monoidal category is a cocommutative comonoid up to homotopy with the deconcatenation product which induces the cup product in Hochschild cohomology.Fil: Cóppola, Claudio Javier. Universidad de la República; UruguayFil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaMount Allison University2024-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/255043Cóppola, Claudio Javier; Solotar, Andrea Leonor; Graded braided commutativity in Hochschild cohomology; Mount Allison University; Theory And Applications Of Categories; 41; 46; 10-2024; 1596-16431201-561XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.tac.mta.ca/tac/volumes/41/46/41-46abs.htmlinfo:eu-repo/semantics/altIdentifier/url/http://www.tac.mta.ca/tac/volumes/41/46/41-46.pdfinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2211.11985info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:50Zoai:ri.conicet.gov.ar:11336/255043instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:50.909CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Graded braided commutativity in Hochschild cohomology |
title |
Graded braided commutativity in Hochschild cohomology |
spellingShingle |
Graded braided commutativity in Hochschild cohomology Cóppola, Claudio Javier Braiding Hochschild cohomology product |
title_short |
Graded braided commutativity in Hochschild cohomology |
title_full |
Graded braided commutativity in Hochschild cohomology |
title_fullStr |
Graded braided commutativity in Hochschild cohomology |
title_full_unstemmed |
Graded braided commutativity in Hochschild cohomology |
title_sort |
Graded braided commutativity in Hochschild cohomology |
dc.creator.none.fl_str_mv |
Cóppola, Claudio Javier Solotar, Andrea Leonor |
author |
Cóppola, Claudio Javier |
author_facet |
Cóppola, Claudio Javier Solotar, Andrea Leonor |
author_role |
author |
author2 |
Solotar, Andrea Leonor |
author2_role |
author |
dc.subject.none.fl_str_mv |
Braiding Hochschild cohomology product |
topic |
Braiding Hochschild cohomology product |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We prove the graded braided commutativity of the Hochschild cohomology of A with trivial coefficients, where A is a braided Hopf algebra in the category of Yetter-Drinfeld modules over the group algebra of an abelian group, under some finiteness conditions on a projective resolution of A as A-bimodule. This is a generalization of a result by Mastnak, Pevtsova, Schauenburg and Witherspoon to a context which includes Nichols algebras such as the Jordan and the super Jordan plane. We prove this result by constructing a coduoid-up-to-homotopy structure on the aforementioned projective resolution in the duoidal category of chain complexes of A-bimodules. We also prove that the Hochschild complex of a braided bialgebra A in an arbitrary braided monoidal category is a cocommutative comonoid up to homotopy with the deconcatenation product which induces the cup product in Hochschild cohomology. Fil: Cóppola, Claudio Javier. Universidad de la República; Uruguay Fil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We prove the graded braided commutativity of the Hochschild cohomology of A with trivial coefficients, where A is a braided Hopf algebra in the category of Yetter-Drinfeld modules over the group algebra of an abelian group, under some finiteness conditions on a projective resolution of A as A-bimodule. This is a generalization of a result by Mastnak, Pevtsova, Schauenburg and Witherspoon to a context which includes Nichols algebras such as the Jordan and the super Jordan plane. We prove this result by constructing a coduoid-up-to-homotopy structure on the aforementioned projective resolution in the duoidal category of chain complexes of A-bimodules. We also prove that the Hochschild complex of a braided bialgebra A in an arbitrary braided monoidal category is a cocommutative comonoid up to homotopy with the deconcatenation product which induces the cup product in Hochschild cohomology. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/255043 Cóppola, Claudio Javier; Solotar, Andrea Leonor; Graded braided commutativity in Hochschild cohomology; Mount Allison University; Theory And Applications Of Categories; 41; 46; 10-2024; 1596-1643 1201-561X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/255043 |
identifier_str_mv |
Cóppola, Claudio Javier; Solotar, Andrea Leonor; Graded braided commutativity in Hochschild cohomology; Mount Allison University; Theory And Applications Of Categories; 41; 46; 10-2024; 1596-1643 1201-561X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.tac.mta.ca/tac/volumes/41/46/41-46abs.html info:eu-repo/semantics/altIdentifier/url/http://www.tac.mta.ca/tac/volumes/41/46/41-46.pdf info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2211.11985 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Mount Allison University |
publisher.none.fl_str_mv |
Mount Allison University |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613120032505856 |
score |
13.070432 |