Universal deformation formulas and braided module algebras
- Autores
- Guccione, J.A.; Guccione, J.J.; Valqui, C.
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study formal deformations of a crossed product S(V)#fG, of a polynomial algebra with a group, induced from a universal deformation formula introduced by Witherspoon. These deformations arise from braided actions of Hopf algebras generated by automorphisms and skew derivations. We show that they are non-trivial in the characteristic free context, even if G is infinite, by showing that their infinitesimals are not coboundaries. For this we construct a new complex which computes the Hochschild cohomology of S(V)#fG. © 2011 Elsevier Inc.
Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Algebra 2011;330(1):263-297
- Materia
-
Crossed product
Deformation
Hochschild cohomology
Primary
Secondary - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
.jpg)
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00218693_v330_n1_p263_Guccione
Ver los metadatos del registro completo
| id |
BDUBAFCEN_0f319881a688f552f29f872c333e4909 |
|---|---|
| oai_identifier_str |
paperaa:paper_00218693_v330_n1_p263_Guccione |
| network_acronym_str |
BDUBAFCEN |
| repository_id_str |
1896 |
| network_name_str |
Biblioteca Digital (UBA-FCEN) |
| spelling |
Universal deformation formulas and braided module algebrasGuccione, J.A.Guccione, J.J.Valqui, C.Crossed productDeformationHochschild cohomologyPrimarySecondaryWe study formal deformations of a crossed product S(V)#fG, of a polynomial algebra with a group, induced from a universal deformation formula introduced by Witherspoon. These deformations arise from braided actions of Hopf algebras generated by automorphisms and skew derivations. We show that they are non-trivial in the characteristic free context, even if G is infinite, by showing that their infinitesimals are not coboundaries. For this we construct a new complex which computes the Hochschild cohomology of S(V)#fG. © 2011 Elsevier Inc.Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00218693_v330_n1_p263_GuccioneJ. Algebra 2011;330(1):263-297reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-11-13T08:45:27Zpaperaa:paper_00218693_v330_n1_p263_GuccioneInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-11-13 08:45:28.566Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
| dc.title.none.fl_str_mv |
Universal deformation formulas and braided module algebras |
| title |
Universal deformation formulas and braided module algebras |
| spellingShingle |
Universal deformation formulas and braided module algebras Guccione, J.A. Crossed product Deformation Hochschild cohomology Primary Secondary |
| title_short |
Universal deformation formulas and braided module algebras |
| title_full |
Universal deformation formulas and braided module algebras |
| title_fullStr |
Universal deformation formulas and braided module algebras |
| title_full_unstemmed |
Universal deformation formulas and braided module algebras |
| title_sort |
Universal deformation formulas and braided module algebras |
| dc.creator.none.fl_str_mv |
Guccione, J.A. Guccione, J.J. Valqui, C. |
| author |
Guccione, J.A. |
| author_facet |
Guccione, J.A. Guccione, J.J. Valqui, C. |
| author_role |
author |
| author2 |
Guccione, J.J. Valqui, C. |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Crossed product Deformation Hochschild cohomology Primary Secondary |
| topic |
Crossed product Deformation Hochschild cohomology Primary Secondary |
| dc.description.none.fl_txt_mv |
We study formal deformations of a crossed product S(V)#fG, of a polynomial algebra with a group, induced from a universal deformation formula introduced by Witherspoon. These deformations arise from braided actions of Hopf algebras generated by automorphisms and skew derivations. We show that they are non-trivial in the characteristic free context, even if G is infinite, by showing that their infinitesimals are not coboundaries. For this we construct a new complex which computes the Hochschild cohomology of S(V)#fG. © 2011 Elsevier Inc. Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
| description |
We study formal deformations of a crossed product S(V)#fG, of a polynomial algebra with a group, induced from a universal deformation formula introduced by Witherspoon. These deformations arise from braided actions of Hopf algebras generated by automorphisms and skew derivations. We show that they are non-trivial in the characteristic free context, even if G is infinite, by showing that their infinitesimals are not coboundaries. For this we construct a new complex which computes the Hochschild cohomology of S(V)#fG. © 2011 Elsevier Inc. |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00218693_v330_n1_p263_Guccione |
| url |
http://hdl.handle.net/20.500.12110/paper_00218693_v330_n1_p263_Guccione |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
J. Algebra 2011;330(1):263-297 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
| reponame_str |
Biblioteca Digital (UBA-FCEN) |
| collection |
Biblioteca Digital (UBA-FCEN) |
| instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| instacron_str |
UBA-FCEN |
| institution |
UBA-FCEN |
| repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
| _version_ |
1848680048558604288 |
| score |
12.742515 |