Universal deformation formulas and braided module algebras

Autores
Guccione, J.A.; Guccione, J.J.; Valqui, C.
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study formal deformations of a crossed product S(V)#fG, of a polynomial algebra with a group, induced from a universal deformation formula introduced by Witherspoon. These deformations arise from braided actions of Hopf algebras generated by automorphisms and skew derivations. We show that they are non-trivial in the characteristic free context, even if G is infinite, by showing that their infinitesimals are not coboundaries. For this we construct a new complex which computes the Hochschild cohomology of S(V)#fG. © 2011 Elsevier Inc.
Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Algebra 2011;330(1):263-297
Materia
Crossed product
Deformation
Hochschild cohomology
Primary
Secondary
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00218693_v330_n1_p263_Guccione

id BDUBAFCEN_0f319881a688f552f29f872c333e4909
oai_identifier_str paperaa:paper_00218693_v330_n1_p263_Guccione
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Universal deformation formulas and braided module algebrasGuccione, J.A.Guccione, J.J.Valqui, C.Crossed productDeformationHochschild cohomologyPrimarySecondaryWe study formal deformations of a crossed product S(V)#fG, of a polynomial algebra with a group, induced from a universal deformation formula introduced by Witherspoon. These deformations arise from braided actions of Hopf algebras generated by automorphisms and skew derivations. We show that they are non-trivial in the characteristic free context, even if G is infinite, by showing that their infinitesimals are not coboundaries. For this we construct a new complex which computes the Hochschild cohomology of S(V)#fG. © 2011 Elsevier Inc.Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00218693_v330_n1_p263_GuccioneJ. Algebra 2011;330(1):263-297reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:49Zpaperaa:paper_00218693_v330_n1_p263_GuccioneInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:50.706Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Universal deformation formulas and braided module algebras
title Universal deformation formulas and braided module algebras
spellingShingle Universal deformation formulas and braided module algebras
Guccione, J.A.
Crossed product
Deformation
Hochschild cohomology
Primary
Secondary
title_short Universal deformation formulas and braided module algebras
title_full Universal deformation formulas and braided module algebras
title_fullStr Universal deformation formulas and braided module algebras
title_full_unstemmed Universal deformation formulas and braided module algebras
title_sort Universal deformation formulas and braided module algebras
dc.creator.none.fl_str_mv Guccione, J.A.
Guccione, J.J.
Valqui, C.
author Guccione, J.A.
author_facet Guccione, J.A.
Guccione, J.J.
Valqui, C.
author_role author
author2 Guccione, J.J.
Valqui, C.
author2_role author
author
dc.subject.none.fl_str_mv Crossed product
Deformation
Hochschild cohomology
Primary
Secondary
topic Crossed product
Deformation
Hochschild cohomology
Primary
Secondary
dc.description.none.fl_txt_mv We study formal deformations of a crossed product S(V)#fG, of a polynomial algebra with a group, induced from a universal deformation formula introduced by Witherspoon. These deformations arise from braided actions of Hopf algebras generated by automorphisms and skew derivations. We show that they are non-trivial in the characteristic free context, even if G is infinite, by showing that their infinitesimals are not coboundaries. For this we construct a new complex which computes the Hochschild cohomology of S(V)#fG. © 2011 Elsevier Inc.
Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We study formal deformations of a crossed product S(V)#fG, of a polynomial algebra with a group, induced from a universal deformation formula introduced by Witherspoon. These deformations arise from braided actions of Hopf algebras generated by automorphisms and skew derivations. We show that they are non-trivial in the characteristic free context, even if G is infinite, by showing that their infinitesimals are not coboundaries. For this we construct a new complex which computes the Hochschild cohomology of S(V)#fG. © 2011 Elsevier Inc.
publishDate 2011
dc.date.none.fl_str_mv 2011
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00218693_v330_n1_p263_Guccione
url http://hdl.handle.net/20.500.12110/paper_00218693_v330_n1_p263_Guccione
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Algebra 2011;330(1):263-297
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618733202440192
score 13.070432