Computationally optimized formulation for the simulation of composite materials and delamination failures

Autores
Martinez, Xavier; Rastellini, Fernando; Flores, Fernando Gabriel; Oller, Sergio Horacio Cristobal
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The numerical simulation of complex failure modes of composite materials, such as delamination, can be computationally very demanding, as it requires special elements and/or numerical strategies to characterize damage onset and propagation. This work presents several formulations developed to optimize the computational performance of an explicit finite element code designed specifically for the simulation of large scale composite structures. The composite mechanical performance is obtained with the matrixreinforcedmixing theory, a simplified version of the serial/parallel mixing theory that does not requirean iterative procedure or the calculation of the tangent stiffness matrix. The number of elements required to perform the simulation is reduced by stacking several layers inside a single finite element. This work also proposes a modification of the isotropic damage law, capable of taking into account the residual strength provided by friction in type II fracture modes. The ability of these formulations to successfully predict the mechanical performance of composite materials is assessed with the ply drop-off test. In this test a laminate with a change of thickness in its mid-span is loaded until it breaks due to a delamination process. The formulation proposed obtains a very accurate prediction of the experimental response of the test, as it provides a very good characterization of the initial laminate stiffness, the delamination onset, and its propagation along the specimen.
Fil: Martinez, Xavier. Universidad Politecnica de Catalunya. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos; España
Fil: Rastellini, Fernando. Centro Internacional de Métodos Numéricos En Ingeniería; España
Fil: Flores, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina
Fil: Oller, Sergio Horacio Cristobal. Universidad Politecnica de Catalunya. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; Argentina
Materia
Materiales Compuestos
Delaminación
Modelización Constitutiva
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/190508

id CONICETDig_78282454178116d252f1784135e0d458
oai_identifier_str oai:ri.conicet.gov.ar:11336/190508
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Computationally optimized formulation for the simulation of composite materials and delamination failuresMartinez, XavierRastellini, FernandoFlores, Fernando GabrielOller, Sergio Horacio CristobalMateriales CompuestosDelaminaciónModelización Constitutivahttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2The numerical simulation of complex failure modes of composite materials, such as delamination, can be computationally very demanding, as it requires special elements and/or numerical strategies to characterize damage onset and propagation. This work presents several formulations developed to optimize the computational performance of an explicit finite element code designed specifically for the simulation of large scale composite structures. The composite mechanical performance is obtained with the matrixreinforcedmixing theory, a simplified version of the serial/parallel mixing theory that does not requirean iterative procedure or the calculation of the tangent stiffness matrix. The number of elements required to perform the simulation is reduced by stacking several layers inside a single finite element. This work also proposes a modification of the isotropic damage law, capable of taking into account the residual strength provided by friction in type II fracture modes. The ability of these formulations to successfully predict the mechanical performance of composite materials is assessed with the ply drop-off test. In this test a laminate with a change of thickness in its mid-span is loaded until it breaks due to a delamination process. The formulation proposed obtains a very accurate prediction of the experimental response of the test, as it provides a very good characterization of the initial laminate stiffness, the delamination onset, and its propagation along the specimen.Fil: Martinez, Xavier. Universidad Politecnica de Catalunya. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos; EspañaFil: Rastellini, Fernando. Centro Internacional de Métodos Numéricos En Ingeniería; EspañaFil: Flores, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; ArgentinaFil: Oller, Sergio Horacio Cristobal. Universidad Politecnica de Catalunya. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; ArgentinaElsevier2011-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/190508Martinez, Xavier; Rastellini, Fernando; Flores, Fernando Gabriel; Oller, Sergio Horacio Cristobal; Computationally optimized formulation for the simulation of composite materials and delamination failures; Elsevier; Composites Part B: Engineering; 42; 2; 2-2011; 134-1441359-83681879-1069CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S135983681000154Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compositesb.2010.09.013info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:27:15Zoai:ri.conicet.gov.ar:11336/190508instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:27:15.362CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Computationally optimized formulation for the simulation of composite materials and delamination failures
title Computationally optimized formulation for the simulation of composite materials and delamination failures
spellingShingle Computationally optimized formulation for the simulation of composite materials and delamination failures
Martinez, Xavier
Materiales Compuestos
Delaminación
Modelización Constitutiva
title_short Computationally optimized formulation for the simulation of composite materials and delamination failures
title_full Computationally optimized formulation for the simulation of composite materials and delamination failures
title_fullStr Computationally optimized formulation for the simulation of composite materials and delamination failures
title_full_unstemmed Computationally optimized formulation for the simulation of composite materials and delamination failures
title_sort Computationally optimized formulation for the simulation of composite materials and delamination failures
dc.creator.none.fl_str_mv Martinez, Xavier
Rastellini, Fernando
Flores, Fernando Gabriel
Oller, Sergio Horacio Cristobal
author Martinez, Xavier
author_facet Martinez, Xavier
Rastellini, Fernando
Flores, Fernando Gabriel
Oller, Sergio Horacio Cristobal
author_role author
author2 Rastellini, Fernando
Flores, Fernando Gabriel
Oller, Sergio Horacio Cristobal
author2_role author
author
author
dc.subject.none.fl_str_mv Materiales Compuestos
Delaminación
Modelización Constitutiva
topic Materiales Compuestos
Delaminación
Modelización Constitutiva
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The numerical simulation of complex failure modes of composite materials, such as delamination, can be computationally very demanding, as it requires special elements and/or numerical strategies to characterize damage onset and propagation. This work presents several formulations developed to optimize the computational performance of an explicit finite element code designed specifically for the simulation of large scale composite structures. The composite mechanical performance is obtained with the matrixreinforcedmixing theory, a simplified version of the serial/parallel mixing theory that does not requirean iterative procedure or the calculation of the tangent stiffness matrix. The number of elements required to perform the simulation is reduced by stacking several layers inside a single finite element. This work also proposes a modification of the isotropic damage law, capable of taking into account the residual strength provided by friction in type II fracture modes. The ability of these formulations to successfully predict the mechanical performance of composite materials is assessed with the ply drop-off test. In this test a laminate with a change of thickness in its mid-span is loaded until it breaks due to a delamination process. The formulation proposed obtains a very accurate prediction of the experimental response of the test, as it provides a very good characterization of the initial laminate stiffness, the delamination onset, and its propagation along the specimen.
Fil: Martinez, Xavier. Universidad Politecnica de Catalunya. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos; España
Fil: Rastellini, Fernando. Centro Internacional de Métodos Numéricos En Ingeniería; España
Fil: Flores, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina
Fil: Oller, Sergio Horacio Cristobal. Universidad Politecnica de Catalunya. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; Argentina
description The numerical simulation of complex failure modes of composite materials, such as delamination, can be computationally very demanding, as it requires special elements and/or numerical strategies to characterize damage onset and propagation. This work presents several formulations developed to optimize the computational performance of an explicit finite element code designed specifically for the simulation of large scale composite structures. The composite mechanical performance is obtained with the matrixreinforcedmixing theory, a simplified version of the serial/parallel mixing theory that does not requirean iterative procedure or the calculation of the tangent stiffness matrix. The number of elements required to perform the simulation is reduced by stacking several layers inside a single finite element. This work also proposes a modification of the isotropic damage law, capable of taking into account the residual strength provided by friction in type II fracture modes. The ability of these formulations to successfully predict the mechanical performance of composite materials is assessed with the ply drop-off test. In this test a laminate with a change of thickness in its mid-span is loaded until it breaks due to a delamination process. The formulation proposed obtains a very accurate prediction of the experimental response of the test, as it provides a very good characterization of the initial laminate stiffness, the delamination onset, and its propagation along the specimen.
publishDate 2011
dc.date.none.fl_str_mv 2011-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/190508
Martinez, Xavier; Rastellini, Fernando; Flores, Fernando Gabriel; Oller, Sergio Horacio Cristobal; Computationally optimized formulation for the simulation of composite materials and delamination failures; Elsevier; Composites Part B: Engineering; 42; 2; 2-2011; 134-144
1359-8368
1879-1069
CONICET Digital
CONICET
url http://hdl.handle.net/11336/190508
identifier_str_mv Martinez, Xavier; Rastellini, Fernando; Flores, Fernando Gabriel; Oller, Sergio Horacio Cristobal; Computationally optimized formulation for the simulation of composite materials and delamination failures; Elsevier; Composites Part B: Engineering; 42; 2; 2-2011; 134-144
1359-8368
1879-1069
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S135983681000154X
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compositesb.2010.09.013
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606626016165888
score 13.001348