Computationally optimized formulation for the simulation of composite materials and delamination failures
- Autores
- Martinez, Xavier; Rastellini, Fernando; Flores, Fernando Gabriel; Oller, Sergio Horacio Cristobal
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The numerical simulation of complex failure modes of composite materials, such as delamination, can be computationally very demanding, as it requires special elements and/or numerical strategies to characterize damage onset and propagation. This work presents several formulations developed to optimize the computational performance of an explicit finite element code designed specifically for the simulation of large scale composite structures. The composite mechanical performance is obtained with the matrixreinforcedmixing theory, a simplified version of the serial/parallel mixing theory that does not requirean iterative procedure or the calculation of the tangent stiffness matrix. The number of elements required to perform the simulation is reduced by stacking several layers inside a single finite element. This work also proposes a modification of the isotropic damage law, capable of taking into account the residual strength provided by friction in type II fracture modes. The ability of these formulations to successfully predict the mechanical performance of composite materials is assessed with the ply drop-off test. In this test a laminate with a change of thickness in its mid-span is loaded until it breaks due to a delamination process. The formulation proposed obtains a very accurate prediction of the experimental response of the test, as it provides a very good characterization of the initial laminate stiffness, the delamination onset, and its propagation along the specimen.
Fil: Martinez, Xavier. Universidad Politecnica de Catalunya. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos; España
Fil: Rastellini, Fernando. Centro Internacional de Métodos Numéricos En Ingeniería; España
Fil: Flores, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina
Fil: Oller, Sergio Horacio Cristobal. Universidad Politecnica de Catalunya. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; Argentina - Materia
-
Materiales Compuestos
Delaminación
Modelización Constitutiva - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/190508
Ver los metadatos del registro completo
id |
CONICETDig_78282454178116d252f1784135e0d458 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/190508 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Computationally optimized formulation for the simulation of composite materials and delamination failuresMartinez, XavierRastellini, FernandoFlores, Fernando GabrielOller, Sergio Horacio CristobalMateriales CompuestosDelaminaciónModelización Constitutivahttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2The numerical simulation of complex failure modes of composite materials, such as delamination, can be computationally very demanding, as it requires special elements and/or numerical strategies to characterize damage onset and propagation. This work presents several formulations developed to optimize the computational performance of an explicit finite element code designed specifically for the simulation of large scale composite structures. The composite mechanical performance is obtained with the matrixreinforcedmixing theory, a simplified version of the serial/parallel mixing theory that does not requirean iterative procedure or the calculation of the tangent stiffness matrix. The number of elements required to perform the simulation is reduced by stacking several layers inside a single finite element. This work also proposes a modification of the isotropic damage law, capable of taking into account the residual strength provided by friction in type II fracture modes. The ability of these formulations to successfully predict the mechanical performance of composite materials is assessed with the ply drop-off test. In this test a laminate with a change of thickness in its mid-span is loaded until it breaks due to a delamination process. The formulation proposed obtains a very accurate prediction of the experimental response of the test, as it provides a very good characterization of the initial laminate stiffness, the delamination onset, and its propagation along the specimen.Fil: Martinez, Xavier. Universidad Politecnica de Catalunya. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos; EspañaFil: Rastellini, Fernando. Centro Internacional de Métodos Numéricos En Ingeniería; EspañaFil: Flores, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; ArgentinaFil: Oller, Sergio Horacio Cristobal. Universidad Politecnica de Catalunya. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; ArgentinaElsevier2011-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/190508Martinez, Xavier; Rastellini, Fernando; Flores, Fernando Gabriel; Oller, Sergio Horacio Cristobal; Computationally optimized formulation for the simulation of composite materials and delamination failures; Elsevier; Composites Part B: Engineering; 42; 2; 2-2011; 134-1441359-83681879-1069CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S135983681000154Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compositesb.2010.09.013info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:27:15Zoai:ri.conicet.gov.ar:11336/190508instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:27:15.362CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Computationally optimized formulation for the simulation of composite materials and delamination failures |
title |
Computationally optimized formulation for the simulation of composite materials and delamination failures |
spellingShingle |
Computationally optimized formulation for the simulation of composite materials and delamination failures Martinez, Xavier Materiales Compuestos Delaminación Modelización Constitutiva |
title_short |
Computationally optimized formulation for the simulation of composite materials and delamination failures |
title_full |
Computationally optimized formulation for the simulation of composite materials and delamination failures |
title_fullStr |
Computationally optimized formulation for the simulation of composite materials and delamination failures |
title_full_unstemmed |
Computationally optimized formulation for the simulation of composite materials and delamination failures |
title_sort |
Computationally optimized formulation for the simulation of composite materials and delamination failures |
dc.creator.none.fl_str_mv |
Martinez, Xavier Rastellini, Fernando Flores, Fernando Gabriel Oller, Sergio Horacio Cristobal |
author |
Martinez, Xavier |
author_facet |
Martinez, Xavier Rastellini, Fernando Flores, Fernando Gabriel Oller, Sergio Horacio Cristobal |
author_role |
author |
author2 |
Rastellini, Fernando Flores, Fernando Gabriel Oller, Sergio Horacio Cristobal |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Materiales Compuestos Delaminación Modelización Constitutiva |
topic |
Materiales Compuestos Delaminación Modelización Constitutiva |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The numerical simulation of complex failure modes of composite materials, such as delamination, can be computationally very demanding, as it requires special elements and/or numerical strategies to characterize damage onset and propagation. This work presents several formulations developed to optimize the computational performance of an explicit finite element code designed specifically for the simulation of large scale composite structures. The composite mechanical performance is obtained with the matrixreinforcedmixing theory, a simplified version of the serial/parallel mixing theory that does not requirean iterative procedure or the calculation of the tangent stiffness matrix. The number of elements required to perform the simulation is reduced by stacking several layers inside a single finite element. This work also proposes a modification of the isotropic damage law, capable of taking into account the residual strength provided by friction in type II fracture modes. The ability of these formulations to successfully predict the mechanical performance of composite materials is assessed with the ply drop-off test. In this test a laminate with a change of thickness in its mid-span is loaded until it breaks due to a delamination process. The formulation proposed obtains a very accurate prediction of the experimental response of the test, as it provides a very good characterization of the initial laminate stiffness, the delamination onset, and its propagation along the specimen. Fil: Martinez, Xavier. Universidad Politecnica de Catalunya. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos; España Fil: Rastellini, Fernando. Centro Internacional de Métodos Numéricos En Ingeniería; España Fil: Flores, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina Fil: Oller, Sergio Horacio Cristobal. Universidad Politecnica de Catalunya. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; Argentina |
description |
The numerical simulation of complex failure modes of composite materials, such as delamination, can be computationally very demanding, as it requires special elements and/or numerical strategies to characterize damage onset and propagation. This work presents several formulations developed to optimize the computational performance of an explicit finite element code designed specifically for the simulation of large scale composite structures. The composite mechanical performance is obtained with the matrixreinforcedmixing theory, a simplified version of the serial/parallel mixing theory that does not requirean iterative procedure or the calculation of the tangent stiffness matrix. The number of elements required to perform the simulation is reduced by stacking several layers inside a single finite element. This work also proposes a modification of the isotropic damage law, capable of taking into account the residual strength provided by friction in type II fracture modes. The ability of these formulations to successfully predict the mechanical performance of composite materials is assessed with the ply drop-off test. In this test a laminate with a change of thickness in its mid-span is loaded until it breaks due to a delamination process. The formulation proposed obtains a very accurate prediction of the experimental response of the test, as it provides a very good characterization of the initial laminate stiffness, the delamination onset, and its propagation along the specimen. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/190508 Martinez, Xavier; Rastellini, Fernando; Flores, Fernando Gabriel; Oller, Sergio Horacio Cristobal; Computationally optimized formulation for the simulation of composite materials and delamination failures; Elsevier; Composites Part B: Engineering; 42; 2; 2-2011; 134-144 1359-8368 1879-1069 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/190508 |
identifier_str_mv |
Martinez, Xavier; Rastellini, Fernando; Flores, Fernando Gabriel; Oller, Sergio Horacio Cristobal; Computationally optimized formulation for the simulation of composite materials and delamination failures; Elsevier; Composites Part B: Engineering; 42; 2; 2-2011; 134-144 1359-8368 1879-1069 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S135983681000154X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compositesb.2010.09.013 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606626016165888 |
score |
13.001348 |